
Jaba Gamrekelashvili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1213130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nature Communications, 2022, 13, 2022.	5.8	16
2	Analysis of Monocyte Cell Fate by Adoptive Transfer in a Murine Model of TLR7-induced Systemic Inflammation. Bio-protocol, 2021, 11, e4007.	0.2	1
3	Notch and TLR signaling coordinate monocyte cell fate and inflammation. ELife, 2020, 9, .	2.8	45
4	Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1. Scientific Reports, 2019, 9, 9798.	1.6	16
5	Multimodal and Multiscale Analysis Reveals Distinct Vascular, Metabolic and Inflammatory Components of the Tissue Response to Limb Ischemia. Theranostics, 2019, 9, 152-166.	4.6	8
6	The chemokine receptor <scp>CX</scp> ₃ <scp>CR</scp> 1 coordinates monocyte recruitment and endothelial regeneration after arterial injury. EMBO Molecular Medicine, 2018, 10, 151-159.	3.3	42
7	Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia. Nature Communications, 2017, 8, 952.	5.8	83
8	Blood flow controls bone vascular function and osteogenesis. Nature Communications, 2016, 7, 13601.	5.8	261
9	Rules of attraction: endothelial Notch signalling controls leucocyte homing in atherosclerosis via VCAM1. Cardiovascular Research, 2016, 112, 527-529.	1.8	7
10	Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nature Communications, 2016, 7, 12597.	5.8	115
11	Tumorâ€induced CD11b ⁺ Grâ€l ⁺ myeloidâ€derived suppressor cells exacerbate immuneâ€mediated hepatitis in mice in a CD40â€dependent manner. European Journal of Immunology, 2015, 45, 1148-1158.	1.6	10
12	Immunogenicity of necrotic cell death. Cellular and Molecular Life Sciences, 2015, 72, 273-283.	2.4	38
13	<scp>IFN</scp> â€i³ regulates survival and function of tumorâ€induced <scp>CD</scp> 11b ⁺ <scp>G</scp> râ€l ^{high} myeloid derived suppressor cells by modulating the antiâ€apoptotic molecule <scp>B</scp> cl2a1. European Journal of Immunology, 2014, 44, 2457-2467.	1.6	57
14	Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. Journal of Hepatology, 2013, 59, 1007-1013.	1.8	154
15	Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunology, Immunotherapy, 2013, 62, 299-307.	2.0	58
16	Hepatic myeloid-derived suppressor cells in tumor bearing mice exacerbate hepatitis and transform into pro-inflammatory myeloid cells. , 2013, 1, .		0
17	Dipeptidyl peptidase 3 and thimet oligopeptidase 1 knockdown support tumor-specific immune responses to whole cell cancer vaccines and tumor cell death in vivo. , 2013, 1, P214.		0
18	Peptidases released by necrotic cells control CD8+ T cell cross-priming. Journal of Clinical Investigation, 2013, 123, 4755-4768.	3.9	28

#	Article	IF	CITATIONS
19	Abstract B30: Cross-priming of CD8+ T cells is controlled by dipeptidyl peptidase 3 and thimet oligopeptidase 1 present in necrotic cells , 2013, , .		0
20	Human CCR4+CCR6+Th17 Cells Suppress Autologous CD8+ T Cell Responses. Journal of Immunology, 2012, 188, 6055-6062.	0.4	48
21	Primary sterile necrotic cells fail to cross-prime CD8 ⁺ T cells. Oncolmmunology, 2012, 1, 1017-1026.	2.1	33
22	Human Th17 cells in patients with cancer. Oncolmmunology, 2012, 1, 1438-1439.	2.1	13
23	Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice. Journal of Leukocyte Biology, 2012, 92, 1199-1206.	1.5	61
24	S100A9 a new marker for monocytic human myeloidâ€derived suppressor cells. Immunology, 2012, 136, 176-183.	2.0	176
25	Abstract 5412: CCR4+CCR6+Th17 cells suppress autologous CD8+ T cell responses in patients with hepatocellular carcinoma. , 2012, , .		0
26	Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood, 2011, 117, 6532-6541.	0.6	205
27	CD49d Is a New Marker for Distinct Myeloid-Derived Suppressor Cell Subpopulations in Mice. Journal of Immunology, 2010, 185, 203-210.	0.4	101
28	Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 2009, 50, 799-807.	3.6	532
29	Myeloid-Derived Suppressor Cells in Inflammatory Bowel Disease: A New Immunoregulatory Pathway. Gastroenterology, 2008, 135, 871-881.e5.	0.6	262
30	Necrotic Tumor Cell Death In Vivo Impairs Tumor-Specific Immune Responses. Journal of Immunology, 2007, 178, 1573-1580.	0.4	44
31	Genetically Induced Pancreatic Adenocarcinoma Is Highly Immunogenic and Causes Spontaneous Tumor-Specific Immune Responses. Cancer Research, 2006, 66, 508-516.	0.4	40