
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1213121/publications.pdf Version: 2024-02-01

DETED | THOMAS

#	Article	IF	CITATIONS
1	Analytical approach to the mean-return-time phase of isotropic stochastic oscillators. Physical Review E, 2022, 105, 024202.	0.8	1
2	Mean-return-time phase of a stochastic oscillator provides an approximate renewal description for the associated point process. Biological Cybernetics, 2022, , 1.	0.6	3
3	A homeostasis criterion for limit cycle systems based on infinitesimal shape response curves. Journal of Mathematical Biology, 2022, 84, 24.	0.8	1
4	Quantitative comparison of the mean–return-time phase and the stochastic asymptotic phase for noisy oscillators. Biological Cybernetics, 2022, 116, 219-234.	0.6	3
5	Subjective Information and Survival in a Simulated Biological System. Entropy, 2022, 24, 639.	1.1	2
6	The Network HHD: Quantifying Cyclic Competition in Trait-Performance Models of Tournaments. SIAM Review, 2022, 64, 360-391.	4.2	1
7	Shape versus Timing: Linear Responses of a Limit Cycle with Hard Boundaries under Instantaneous and Static Perturbation. SIAM Journal on Applied Dynamical Systems, 2021, 20, 701-744.	0.7	8
8	Biological Cybernetics: 60 years and more to come. Biological Cybernetics, 2021, 115, 5-6.	0.6	4
9	Dynamical consequences of sensory feedback in a half-center oscillator coupled to a simple motor system. Biological Cybernetics, 2021, 115, 135-160.	0.6	7
10	Resolving molecular contributions of ion channel noise to interspike interval variability through stochastic shielding. Biological Cybernetics, 2021, 115, 267-302.	0.6	6
11	Subjective Information in Life Processes. , 2021, , .		0
12	Isostables for Stochastic Oscillators. Physical Review Letters, 2021, 127, 254101.	2.9	11
13	A Renewed Vision for Biological Cybernetics. Biological Cybernetics, 2020, 114, 315-316.	0.6	5
14	Fast and Accurate Langevin Simulations of Stochastic Hodgkin-Huxley Dynamics. Neural Computation, 2020, 32, 1775-1835.	1.3	11
15	Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. Biological Cybernetics, 2020, 114, 557-588.	0.6	17
16	A Partial Differential Equation for the MeanReturn-Time Phase of Planar Stochastic Oscillators. SIAM Journal on Applied Mathematics, 2020, 80, 422-447.	0.8	12
17	Robotics Application of a Method for Analytically Computing Infinitesimal Phase Response Curves. Lecture Notes in Computer Science, 2020, , 104-115.	1.0	2
18	Phase descriptions of a multidimensional Ornstein-Uhlenbeck process. Physical Review E, 2019, 99, 062221.	0.8	18

#	Article	IF	CITATIONS
19	Control theory in biology and medicine. Biological Cybernetics, 2019, 113, 1-6.	0.6	16
20	How to avoid an extinction time paradox. Theoretical Ecology, 2019, 12, 467-487.	0.4	9
21	Linear Noise Approximation of Intensity-Driven Signal Transduction Channels. , 2019, , .		2
22	The Channel Capacity of Channelrhodopsin and Other Intensity-Driven Signal Transduction Receptors. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2018, 4, 27-38.	1.4	9
23	Experimental Validation of a Closed-Loop Respiratory Control Model using Dynamic Clamp. , 2018, 2018, 5273-5276.		2
24	Welcome from the new Editor(s)-in-Chief. Biological Cybernetics, 2018, 112, 163-163.	0.6	0
25	Stochastic shielding and edge importance for Markov chains with timescale separation. PLoS Computational Biology, 2018, 14, e1006206.	1.5	9
26	Thermodynamic Properties of Molecular Communication. , 2018, , .		2
27	Experimental Validation of a Respiratory Control Model. FASEB Journal, 2018, 32, 915.1.	0.2	Ο
28	Power Spectrum of a Noisy System Close to a Heteroclinic Orbit. Journal of Statistical Physics, 2017, 168, 447-469.	0.5	8
29	Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. Journal of Neurophysiology, 2017, 118, 2194-2215.	0.9	18
30	Robustness, flexibility, and sensitivity in a multifunctional motor control model. Biological Cybernetics, 2017, 111, 25-47.	0.6	31
31	Capacity of a Simple Intercellular Signal Transduction Channel. IEEE Transactions on Information Theory, 2016, 62, 7358-7382.	1.5	48
32	Guest Editorial Biological Applications of Information Theory in Honor of Claude Shannon's Centennial—Part II. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2, 117-119.	1.4	0
33	Finite-state channel models for signal transduction in neural systems. , 2016, , .		5
34	Shannon capacity of signal transduction for multiple independent receptors. , 2016, , .		9
35	Guest Editorial Biological Applications of Information Theory in Honor of Claude Shannon's Centennial—Part 1. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2, 1-4.	1.4	1
36	Stochastic Network Models in Neuroscience: A Festschrift for Jack Cowan. Introduction to the Special Issue. Journal of Mathematical Neuroscience, 2016, 6, 4.	2.4	4

#	Article	IF	CITATIONS
37	Thomas and Lindner Reply:. Physical Review Letters, 2015, 115, 069402.	2.9	6
38	Fast and accurate representations of stochastic ion channel fluctuations. BMC Neuroscience, 2015, 16, P258.	0.8	0
39	Neuromechanical bistability contributes to robust and flexible behavior in a model of motor pattern generation. BMC Neuroscience, 2015, 16, .	0.8	1
40	Commentary on Structured chaos shapes spike-response noise entropy in balanced neural networks, by Lajoie, Thivierge, and Shea-Brown. Frontiers in Computational Neuroscience, 2015, 9, 23.	1.2	0
41	Information theory of intercellular signal transduction. , 2015, , .		7
42	Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics. Journal of Computational Neuroscience, 2015, 38, 67-82.	0.6	35
43	The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior. Journal of Computational Neuroscience, 2015, 38, 25-51.	0.6	27
44	Growth and evolution of category fluency network graphs. Journal of Systems and Integrative Neuroscience, 2015, 1, 6-13.	0.6	3
45	Asymptotic Phase for Stochastic Oscillators. Physical Review Letters, 2014, 113, 254101.	2.9	40
46	Measuring Edge Importance: A Quantitative Analysis of the Stochastic Shielding Approximation for Random Processes on Graphs. Journal of Mathematical Neuroscience, 2014, 4, 6.	2.4	13
47	Capacity of a simple intercellular signal transduction channel. , 2013, , .		18
48	Multiple Spike Time Patterns Occur at Bifurcation Points of Membrane Potential Dynamics. PLoS Computational Biology, 2012, 8, e1002615.	1.5	22
49	Spontaneous autoresuscitation in a model of respiratory control. , 2012, 2012, 6669-72.		4
50	Phase Resetting in an Asymptotically Phaseless System: On the Phase Response of Limit Cycles Verging on a Heteroclinic Orbit. SIAM Journal on Applied Dynamical Systems, 2012, 11, 350-391.	0.7	34
51	Generalized spin models for coupled cortical feature maps obtained by coarse graining correlation based synaptic learning rules. Journal of Mathematical Biology, 2012, 65, 1149-1186.	0.8	5
52	Random local temporal structure of category fluency responses. Journal of Computational Neuroscience, 2012, 32, 213-231.	0.6	12
53	Pursuit of food versus pursuit of information in a Markovian perception–action loop model of foraging. Journal of Theoretical Biology, 2012, 304, 235-272.	0.8	14
54	Finding the Event Structure of Neuronal Spike Trains. Neural Computation, 2011, 23, 2169-2208.	1.3	16

#	Article	IF	CITATIONS
55	A Lower Bound for the First Passage Time Density of the Suprathreshold Ornstein-Uhlenbeck Process. Journal of Applied Probability, 2011, 48, 420-434.	0.4	3
56	A Lower Bound for the First Passage Time Density of the Suprathreshold Ornstein-Uhlenbeck Process. Journal of Applied Probability, 2011, 48, 420-434.	0.4	7
57	A new high-throughput method for simultaneous detection of drug resistance associated mutations in Plasmodium vivax dhfr, dhps and mdr1 genes. Malaria Journal, 2011, 10, 282.	0.8	23
58	Every Bit Counts. Science, 2011, 334, 321-322.	6.0	13
59	Differentiating Plasmodium falciparum alleles by transforming Cartesian X,Y data to polar coordinates. BMC Genetics, 2010, 11, 57.	2.7	7
60	Intrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons. European Journal of Neuroscience, 2010, 31, 1019-1026.	1.2	20
61	Intrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons. European Journal of Neuroscience, 2010, 31, 1509-1509.	1.2	0
62	Network Graph Analysis of Category Fluency Testing. Cognitive and Behavioral Neurology, 2009, 22, 45-52.	0.5	43
63	A binless correlation measure reduces the variability of memory reactivation estimates. Statistics in Medicine, 2007, 26, 3997-4008.	0.8	19
64	Simultaneous constraints on pre- and post-synaptic cells couple cortical feature maps in a 2D geometric model of orientation preference. Mathematical Medicine and Biology, 2006, 23, 119-138.	0.8	7
65	Symmetry Induced Coupling of Cortical Feature Maps. Physical Review Letters, 2004, 92, 188101.	2.9	19
66	Discovering Spike Patterns in Neuronal Responses. Journal of Neuroscience, 2004, 24, 2989-3001.	1.7	177
67	Reliability and bifurcation in neurons driven by multiple sinusoids. Neurocomputing, 2003, 52-54, 955-961.	3.5	10
68	What Geometric Visual Hallucinations Tell Us about the Visual Cortex. Neural Computation, 2002, 14, 473-491.	1.3	181
69	Establishing Direction during Chemotaxis in Eukaryotic Cells. Biophysical Journal, 2002, 83, 1361-1367.	0.2	84
70	Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 299-330.	1.8	335
71	Scalar and pseudoscalar bifurcations motivated by pattern formation on the visual cortex. Nonlinearity, 2001, 14, 739-775.	0.6	48
72	Resonance Effect for Neural Spike Time Reliability. Journal of Neurophysiology, 1998, 80, 1427-1438.	0.9	137