Sumati Sundaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12130412/publications.pdf

Version: 2024-02-01

687363 940533 17 543 13 16 citations h-index g-index papers 17 17 17 939 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Esophageal regeneration following surgical implantation of a tissue engineered esophageal implant in a pediatric model. Npj Regenerative Medicine, 2022, 7 , 1 .	5.2	10
2	Biomechanics of regenerated esophageal tissue following the implantation of a tissue engineered CellspanTM Esophageal Implant. Journal of Biomechanics, 2022, 140, 111162.	2.1	1
3	First-in-Human Segmental Esophageal Reconstruction Using a Bioengineered Mesenchymal Stromal Cell–Seeded Implant. JTO Clinical and Research Reports, 2021, 2, 100216.	1.1	6
4	Glycocalyxâ€Like Hydrogel Coatings for Small Diameter Vascular Grafts. Advanced Functional Materials, 2020, 30, 1908963.	14.9	33
5	Tissue engineering and regenerative medicine. , 2016, , 488-504.		1
6	Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine. Biomaterials, 2016 , 102 , 220 - 230 .	11.4	68
7	Engineered Tissue–Stent Biocomposites as Tracheal Replacements. Tissue Engineering - Part A, 2016, 22, 1086-1097.	3.1	30
8	New Functional Tools for Antithrombogenic Activity Assessment of Live Surface Glycocalyx. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1847-1853.	2.4	18
9	Click-coated, heparinized, decellularized vascular grafts. Acta Biomaterialia, 2015, 13, 177-187.	8.3	65
10	Fate of Distal Lung Epithelium Cultured in a Decellularized Lung Extracellular Matrix. Tissue Engineering - Part A, 2015, 21, 1916-1928.	3.1	24
11	Tissue-Engineered Vascular Grafts Created From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2014, 3, 1535-1543.	3.3	55
12	Strategies for Whole Lung Tissue Engineering. IEEE Transactions on Biomedical Engineering, 2014, 61, 1482-1496.	4.2	49
13	Small diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells. Tissue Engineering - Part A, 2013, 20, 131015043635000.	3.1	14
14	Smooth Muscle and Other Cell Sources for Human Blood Vessel Engineering. Cells Tissues Organs, 2012, 195, 15-25.	2.3	30
15	Interplay of polyethyleneimine molecular weight and oligonucleotide backbone chemistry in the dynamics of antisense activity. Nucleic Acids Research, 2007, 35, 4396-4408.	14.5	21
16	Oligonucleotide Structure Influences the Interactions between Cationic Polymers and Oligonucleotides. Biomacromolecules, 2005, 6, 2961-2968.	5 . 4	23
17	Engineering Synthetic Vectors for Improved DNA Delivery: Insights from Intracellular Pathways. Annual Review of Biomedical Engineering, 2004, 6, 397-426.	12.3	95