John H Viles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1212940/publications.pdf

Version: 2024-02-01

50	4,719	126858	189801
papers	citations	h-index	g-index
51	51	51	4897
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cross-seeding of WT amyloid- \hat{l}^2 with Arctic but not Italian familial mutants accelerates fibril formation in Alzheimer's disease. Journal of Biological Chemistry, 2022, 298, 102071.	1.6	8
2	Therapeutic potential for amyloid surface inhibitor: only amyloid $\hat{a} \in \hat{I}^2$ oligomers formed by secondary nucleation disrupt lipid membrane integrity. FEBS Journal, 2022, 289, 6767-6781.	2.2	7
3	3D-visualization of amyloid- \hat{l}^2 oligomer interactions with lipid membranes by cryo-electron tomography. Chemical Science, 2021, 12, 6896-6907.	3.7	31
4	Copper $<$ sup $>2+sup> Binding to \hat{l}\pm-Synuclein. Histidine 50 Can Form a Ternary Complex with Cu<sup>2+sup> at the N-Terminus but Not a Macrochelate. Inorganic Chemistry, 2019, 58, 15580-15589.$	1.9	9
5	Amyloid- \hat{l}^2 oligomers have a profound detergent-like effect on lipid membrane bilayers, imaged by atomic force and electron microscopy. Journal of Biological Chemistry, 2019, 294, 7566-7572.	1.6	112
6	Serum Albumin's Protective Inhibition of Amyloid-β Fiber Formation Is Suppressed by Cholesterol, Fatty Acids and Warfarin. Journal of Molecular Biology, 2018, 430, 919-934.	2.0	24
7	Copper Redox Cycling Inhibits $\hat{Al^2}$ Fibre Formation and Promotes Fibre Fragmentation, while Generating a Dityrosine $\hat{Al^2}$ Dimer. Scientific Reports, 2018, 8, 16190.	1.6	46
8	Prion protein stabilizes amyloid- \hat{l}^2 (A \hat{l}^2) oligomers and enhances A \hat{l}^2 neurotoxicity in a Drosophila model of Alzheimer's disease. Journal of Biological Chemistry, 2018, 293, 13090-13099.	1.6	29
9	Nâ€Terminally Truncated Amyloidâ€Î² _(11â€"40/42) Cofibrillizes with its Fullâ€Length Counterpart: Implications for Alzheimer's Disease. Angewandte Chemie - International Edition, 2017, 56, 9816-9819.	7.2	25
10	Ion Channel Formation by Amyloid- \hat{l}^2 42 Oligomers but Not Amyloid- \hat{l}^2 40 in Cellular Membranes. Journal of Biological Chemistry, 2017, 292, 1404-1413.	1.6	159
11	Nâ€Terminally Truncated Amyloidâ€Î² (11 – 40/42) Cofibrillizes with its Fullâ€Length Counterpart: Implications for Alzheimer's Disease. Angewandte Chemie, 2017, 129, 9948-9951.	1.6	7
12	Endocytosis of the tachykinin neuropeptide, neurokinin B, in astrocytes and its role in cellular copper uptake. Journal of Inorganic Biochemistry, 2016, 162, 319-325.	1.5	13
13	The Rapid Exchange of Zinc2+ Enables Trace Levels to Profoundly Influence Amyloid- \hat{l}^2 Misfolding and Dominates Assembly Outcomes in Cu2+/Zn2+ Mixtures. Journal of Molecular Biology, 2016, 428, 2832-2846.	2.0	25
14	Methionine oxidation reduces lag-times for amyloid- $\hat{l}^2(1\hat{a}\in 40)$ fiber formation but generates highly fragmented fibers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1260-1269.	1.1	20
15	A Comparison of Three Fluorophores for the Detection of Amyloid Fibers and Prefibrillar Oligomeric Assemblies. ThT (Thioflavin T); ANS (1-Anilinonaphthalene-8-sulfonic Acid); and bisANS (4,4′-Dianilino-1,1′-binaphthyl-5,5′-disulfonic Acid). Biochemistry, 2015, 54, 4297-4306.	1.2	143
16	Cu2+ accentuates distinct misfolding of Al̂²(1–40) and Al̂²(1–42) peptides, and potentiates membrane disruption. Biochemical Journal, 2015, 466, 233-242.	1.7	56
17	Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chemical Reviews, 2015, 115, 3518-3563.	23.0	530
18	Truncated Amyloid- $\hat{l}^2(11\hat{a}\in 40/42)$ from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and Influences Fiber Assembly. Journal of Biological Chemistry, 2015, 290, 27791-27802.	1.6	53

#	Article	IF	CITATIONS
19	Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 358-365.	1.1	6
20	Developing predictive rules for coordination geometry from visible circular dichroism of copper(<scp>II</scp>) and nickel(<scp>II</scp>) ions in histidine and amide mainâ€chain complexes. FEBS Journal, 2014, 281, 3945-3954.	2.2	35
21	Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1842-1850.	1.1	4
22	Copper(II) Sequentially Loads onto the N-Terminal Amino Group of the Cellular Prion Protein before the Individual Octarepeats. Biochemistry, 2014, 53, 3934-3939.	1.2	15
23	The cellular prion protein traps Alzheimer's $\hat{Al^2}$ in an oligomeric form and disassembles amyloid fibers. FASEB Journal, 2013, 27, 1847-1858.	0.2	89
24	Human Serum Albumin Can Regulate Amyloid- \hat{l}^2 Peptide Fiber Growth in the Brain Interstitium. Journal of Biological Chemistry, 2012, 287, 28163-28168.	1.6	134
25	Methionine Oxidation Perturbs the Structural Core of the Prion Protein and Suggests a Generic Misfolding Pathway. Journal of Biological Chemistry, 2012, 287, 28263-28275.	1.6	48
26	Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coordination Chemistry Reviews, 2012, 256, 2271-2284.	9.5	339
27	The Synucleins Are a Family of Redox-Active Copper Binding Proteins. Biochemistry, 2011, 50, 37-47.	1.2	66
28	Copper(II)-Induced Secondary Structure Changes and Reduced Folding Stability of the Prion Protein. Journal of Molecular Biology, 2011, 410, 369-382.	2.0	52
29	Substoichiometric Levels of Cu2+ Ions Accelerate the Kinetics of Fiber Formation and Promote Cell Toxicity of Amyloid-β from Alzheimer Disease. Journal of Biological Chemistry, 2010, 285, 41533-41540.	1.6	174
30	Dynamics of a truncated prion protein, PrP(113–231), from ¹⁵ N NMR relaxation: Order parameters calculated and slow conformational fluctuations localized to a distinct region. Protein Science, 2009, 18, 410-423.	3.1	28
31	Evaluation of Copper ²⁺ Affinities for the Prion Protein. Biochemistry, 2009, 48, 8929-8931.	1.2	40
32	Copper(II) Binding to Amyloid-β Fibrils of Alzheimer's Disease Reveals a Picomolar Affinity: Stoichiometry and Coordination Geometry Are Independent of Aβ Oligomeric Form. Biochemistry, 2009, 48, 4388-4402.	1.2	198
33	Amyloid $\hat{l}^2\hat{a}^{\prime\prime}$ Cu ²⁺ Complexes in both Monomeric and Fibrillar Forms Do Not Generate H ₂ O ₂ Catalytically but Quench Hydroxyl Radicals. Biochemistry, 2008, 47, 11653-11664.	1.2	113
34	Manganese Binding to the Prion Protein. Journal of Biological Chemistry, 2008, 283, 12831-12839.	1.6	90
35	Deconvoluting the Cu2+ Binding Modes of Full-length Prion Protein*. Journal of Biological Chemistry, 2008, 283, 1870-1881.	1.6	97
36	Copper and the structural biology of the prion protein. Biochemical Society Transactions, 2008, 36, 1288-1292.	1.6	68

#	Article	IF	Citations
37	NMR characterization of the pH 4 \hat{l}^2 -intermediate of the prion protein: the N-terminal half of the protein remains unstructured and retains a high degree of flexibility. Biochemical Journal, 2007, 401, 533-540.	1.7	36
38	Empirical rules for rationalising visible circular dichroism of Cu2+and Ni2+histidine complexes: Applications to the prion protein. FEBS Letters, 2007, 581, 1430-1434.	1.3	61
39	Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Biochemical Journal, 2007, 404, 393-402.	1.7	69
40	Prion protein does not redox-silence Cu2+, but is a sacrificial quencher of hydroxyl radicals. Free Radical Biology and Medicine, 2007, 42, 79-89.	1.3	74
41	A survey of diamagnetic probes for copper2+binding to the prion protein.1H NMR solution structure of the palladium2+bound single octarepeat. Dalton Transactions, 2006, , 509-518.	1.6	25
42	Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide ($\hat{Al^2}$) of Alzheimer's disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 246-256.	1.1	154
43	Probing Copper2+ Binding to the Prion Protein Using Diamagnetic Nickel2+ and 1H NMR: The Unstructured N terminus Facilitates the Coordination of Six Copper2+ lons at Physiological Concentrations. Journal of Molecular Biology, 2005, 346, 1393-1407.	2.0	148
44	Preferential Cu2+ Coordination by His96 and His111 Induces \hat{l}^2 -Sheet Formation in the Unstructured Amyloidogenic Region of the Prion Protein. Journal of Biological Chemistry, 2004, 279, 32018-32027.	1.6	218
45	Copper Binding to the Amyloid- \hat{l}^2 (A \hat{l}^2) Peptide Associated with Alzheimer's Disease. Journal of Biological Chemistry, 2004, 279, 18169-18177.	1.6	414
46	Copper Binding to the Octarepeats of the Prion Protein. Journal of Biological Chemistry, 2003, 278, 6795-6802.	1.6	191
47	Local Structural Plasticity of the Prion Protein. Analysis of NMR Relaxation Dynamicsâ€. Biochemistry, 2001, 40, 2743-2753.	1.2	171
48	Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods. Journal of Biomolecular NMR, 2001, 21, 1-9.	1.6	44
49	Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Comparison with Co2+, Cd2+ and Al3+. FEBS Journal, 1994, 220, 193-200.	0.2	184
50	Direct detection of albumin in human blood plasma by proton NMR spectroscopy. Complexation of nickel2+. Journal of the American Chemical Society, 1993, 115, 9285-9286.	6.6	36