
Silvia Campioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12129136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Particle Resolution of Copper-Associated Annular α-Synuclein Oligomers Reveals Potential Therapeutic Targets of Neurodegeneration. ACS Chemical Neuroscience, 2022, 13, 1410-1421.	1.7	12
2	Nanocellulose-lysozyme colloidal gels via electrostatic complexation. Carbohydrate Polymers, 2021, 251, 117021.	5.1	22
3	Self-Assembly Pathways and Antimicrobial Properties of Lysozyme in Different Aggregation States. Biomacromolecules, 2021, 22, 4327-4336.	2.6	17
4	Chitin–amyloid synergism and their use as sustainable structural adhesives. Journal of Materials Chemistry A, 2021, 9, 19741-19753.	5.2	11
5	Regulation of α-synuclein by chaperones in mammalian cells. Nature, 2020, 577, 127-132.	13.7	184
6	Assembly of Cellulose Nanocrystal–Lysozyme Composite Films with Varied Lysozyme Morphology. Biomacromolecules, 2020, 21, 5139-5147.	2.6	30
7	Interfaces Determine the Fate of Seeded α‣ynuclein Aggregation. Advanced Materials Interfaces, 2020, 7, 2000446.	1.9	7
8	Airâ€Water Interfaces: Interfaces Determine the Fate of Seeded αâ€ S ynuclein Aggregation (Adv. Mater.) Tj ETQc	10 0 0 rgB⊺ 1.9 rgB⊺	[/8verlock]
9	An Easy Path for Correlative Electron and Super-Resolution Light Microscopy. Scientific Reports, 2019, 9, 15526.	1.6	8
10	Rational Structureâ€Based Design of Fluorescent Probes for Amyloid Folds. ChemBioChem, 2019, 20, 1161-1166.	1.3	5
11	Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles. Journal of Biological Chemistry, 2016, 291, 8516-8527.	1.6	49
12	α-Synuclein Insertion into Supported Lipid Bilayers As Seen by in Situ X-ray Reflectivity. ACS Chemical Neuroscience, 2015, 6, 374-379.	1.7	7
13	Solution NMR Studies of Recombinant Aβ(1–42): From the Presence of a Micellar Entity to Residual βâ€5heet Structure in the Soluble Species. ChemBioChem, 2015, 16, 659-669.	1.3	42

14	Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain, 2014, 137, 1496-1513.	3.7	199
15	The Presence of an Air–Water Interface Affects Formation and Elongation of α-Synuclein Fibrils. Journal of the American Chemical Society, 2014, 136, 2866-2875.	6.6	229
16	α-Synuclein Oligomers Impair Neuronal Microtubule-Kinesin Interplay. Journal of Biological Chemistry, 2013, 288, 21742-21754.	1.6	117

17	Salt Anions Promote the Conversion of HypF-N into Amyloid-Like Oligomers and Modulate the Structure of the Oligomers and the Monomeric Precursor State. Journal of Molecular Biology, 2012, 424, 132-149.	2.0	24
18	Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12479-12484.	3.3	137

SILVIA CAMPIONI

#	Article	IF	CITATIONS
19	A comparison of the biochemical modifications caused by toxic and nonâ€toxic protein oligomers in cells. Journal of Cellular and Molecular Medicine, 2011, 15, 2106-2116.	1.6	53
20	In vivo demonstration that α-synuclein oligomers are toxic. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4194-4199.	3.3	1,252
21	A causative link between the structure of aberrant protein oligomers and their toxicity. Nature Chemical Biology, 2010, 6, 140-147.	3.9	499
22	Detection of Populations of Amyloid-Like Protofibrils with Different Physical Properties. Biophysical Journal, 2010, 98, 1277-1284.	0.2	47
23	Low-Level Expression of a Folding-Incompetent Protein in Escherichia coli: Search for the Molecular Determinants of Protein Aggregation In Vivo. Journal of Molecular Biology, 2010, 398, 600-613.	2.0	21
24	Structure and Dynamics of a Partially Folded Protein Are Decoupled from Its Mechanism of Aggregation. Journal of the American Chemical Society, 2008, 130, 13040-13050.	6.6	38
25	Conformational properties of the aggregation precursor state of HypF-N. Journal of Molecular Biology, 2008, 379, 554-567.	2.0	45
26	Prediction of Aggregation-Prone Regions in Structured Proteins. Journal of Molecular Biology, 2008, 380, 425-436.	2.0	420
27	Sequence and Structural Determinants of Amyloid Fibril Formation. Accounts of Chemical Research, 2006, 39, 620-627.	7.6	102