
Isabel Van Driessche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/121287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life Cycle Assessment of Completely Recyclable Concrete. Materials, 2014, 7, 6010-6027.	1.3	133
2	Probing Solvent–Ligand Interactions in Colloidal Nanocrystals by the NMR Line Broadening. Chemistry of Materials, 2018, 30, 5485-5492.	3.2	117
3	From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces. Dalton Transactions, 2016, 45, 13277-13283.	1.6	97
4	Superconducting YBa ₂ Cu ₃ O _{7–δ} Nanocomposites Using Preformed ZrO ₂ Nanocrystals: Growth Mechanisms and Vortex Pinning Properties. Advanced Electronic Materials, 2016, 2, 1600161.	2.6	55
5	The Trouble with ODE: Polymerization during Nanocrystal Synthesis. Nano Letters, 2019, 19, 7411-7417.	4.5	54
6	Stabilization of Colloidal Ti, Zr, and Hf Oxide Nanocrystals by Protonated Tri- <i>n</i> -octylphosphine Oxide (TOPO) and Its Decomposition Products. Chemistry of Materials, 2017, 29, 10233-10242.	3.2	47
7	Fast, microwave-assisted synthesis of monodisperse HfO2 nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	45
8	Optimizing Nanocomposites through Nanocrystal Surface Chemistry: Superconducting YBa ₂ Cu ₃ O ₇ Thin Films via Low-Fluorine Metal Organic Deposition and Preformed Metal Oxide Nanocrystals. Chemistry of Materials, 2017, 29, 6104-6113.	3.2	45
9	Stabilizing Fluoride Phosphors: Surface Modification by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 7192-7202.	3.2	42
10	Optimization of spray dried attrition-resistant iron based oxygen carriers for chemical looping reforming. Chemical Engineering Journal, 2017, 309, 824-839.	6.6	34
11	High Critical Current Density and Enhanced Pinning in Superconducting Films of YBa ₂ Cu ₃ O _{7â[^]Î} Nanocomposites with Embedded BaZrO ₃ , BaHfO ₃ , BaTiO ₃ , and SrZrO ₃ Nanocrystals. ACS Applied Nano Materials, 2020, 3, 5542-5553.	2.4	28
12	X-ray Photoelectron Spectroscopy (XPS) Depth Profiling for Evaluation of La2Zr2O7 Buffer Layer Capacity. Materials, 2012, 5, 364-376.	1.3	23
13	How Ligands Affect Resistive Switching in Solution-Processed HfO ₂ Nanoparticle Assemblies. ACS Applied Materials & Interfaces, 2018, 10, 4824-4830.	4.0	23
14	Chemical and Physical Analysis of Acetate-Oxide Sol-Gel Processing Routes for the Y-Ba-Cu-O System. Journal of Sol-Gel Science and Technology, 2005, 36, 87-94.	1.1	20
15	Pair Distribution Function Analysis of ZrO2 Nanocrystals and Insights in the Formation of ZrO2-YBa2Cu3O7 Nanocomposites. Materials, 2018, 11, 1066.	1.3	20
16	Solution-based synthesis of BaZrO3 nanoparticles: conventional versus microwave synthesis. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
17	Controlled crystal orientation in fluorine-free superconducting YBa2Cu3O7â^î^ films. Materials Chemistry and Physics, 2012, 133, 998-1002.	2.0	15
18	Influence of Morphology and Texture of CeO ₂ on YBa ₂ Cu ₃ O ₇ (YBCO) Growth and BaCeO ₃ Formation in Solutionâ€Derived Synthesis. European Journal of Inorganic Chemistry, 2012, 2012, 1186-1194.	1.0	15

2

#	Article	IF	CITATIONS
19	Size Tunable Synthesis and Surface Chemistry of Metastable TiO ₂ - <i>Bronze</i> Nanocrystals. Chemistry of Materials, 2018, 30, 4298-4306.	3.2	15
20	Influence of Ba ²⁺ consumption and intermediate dwelling during processing of YBa ₂ Cu ₃ O ₇ nanocomposite films. Journal of the American Ceramic Society, 2019, 102, 3870-3878.	1.9	15
21	Comments on the wetting behavior of non-porous substrates for ceramic coated-conductor applications. Journal of Sol-Gel Science and Technology, 2012, 62, 378-388.	1.1	14
22	In-field performance and flux pinning mechanism of pulsed laser deposition grown BaSnO ₃ /GdBa ₂ Cu ₃ O _{7‑î´} nanocomposite coated conductors by SuperOx. Superconductor Science and Technology, 2019, 32, 094003.	1.8	13
23	Ceo2 Based Catalysts for the Treatment of Propylene in Motorcycle's Exhaust Gases. Materials, 2014, 7, 7379-7397.	1.3	12
24	Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity. Journal of Materials Science, 2016, 51, 9822-9829.	1.7	12
25	Thickness Characterization Toolbox for Transparent Protective Coatings on Polymer Substrates. Materials, 2018, 11, 1101.	1.3	12
26	Improved photocatalytic activity of polymer-modified TiO2 films obtained by a wet chemical route. Journal of Materials Science, 2012, 47, 6366-6374.	1.7	11
27	Microwaveâ€assisted YBa ₂ Cu ₃ O ₇ precursors: A fast and reliable method towards chemical precursors for superconducting films. Journal of the American Ceramic Society, 2017, 100, 2407-2418.	1.9	11
28	Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis. Materials, 2013, 6, 4082-4095.	1.3	9
29	Durability and efficiency of ink-jet printed TiO2 coatings: Influence of processing temperature. Thin Solid Films, 2014, 556, 160-167.	0.8	8
30	Effect of Polymer Inclusion in Preparation of Thick LZO Buffer Layers forÂYBCO Coated Conductors. Journal of Materials Science and Technology, 2013, 29, 261-266.	5.6	7
31	Unravelling the Crystallization Process in Solution-Derived YBa ₂ Cu ₃ O _{7-δ} Nanocomposite Films with Preformed ZrO ₂ Nanocrystals via Definitive Screening Design. Journal of Physical Chemistry Letters, 2021, 12, 2118-2125.	2.1	7
32	Memristive Behavior of Mixed Oxide Nanocrystal Assemblies. ACS Applied Materials & amp; Interfaces, 2021, 13, 21635-21644.	4.0	6
33	Chemical solution deposition of functional ceramic coatings using ink-jet printing. Pure and Applied Chemistry, 2015, 87, 231-238.	0.9	5
34	Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation. Journal of Materials Science, 2020, 55, 1933-1945.	1.7	4
35	Influence of the heating ramp on the superconducting properties of YBa2Cu3O7â^'î´ films using chemical solution deposition in a direct sintering method. Thin Solid Films, 2013, 548, 498-501.	0.8	3
36	Pore Narrowing of Mesoporous Silica Materials. Materials, 2013, 6, 570-579.	1.3	3

#	Article	IF	CITATIONS
37	Ink-jet Printing of YBa2Cu3O7 Superconducting Coatings and Patterns from Aqueous Solutions. Materials Research Society Symposia Proceedings, 2012, 1449, 25.	0.1	2
38	Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers. New Journal of Physics, 2019, 21, 113019.	1.2	2
39	Strongly Enhanced Growth of High-Temperature Superconducting Films on an Advanced Metallic Template. Crystal Growth and Design, 2022, 22, 2097-2104.	1.4	2
40	The Application of High Surface Area Cordierite Synthesized from Kaolin as a Substrate for Auto Exhaust Catalysts. Journal of the Chinese Chemical Society, 2015, 62, 536-546.	0.8	1
41	Chemical stability of YBiO3 buffer layers for implementation in YBa2Cu3O7-δ coated conductors. Acta Materialia, 2015, 100, 224-231.	3.8	0