Qui Tran-Cong-Miyata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12127798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the gelation dynamics for polystyrenes prepared by conventional and living radical polymerizations: a time-resolved dynamic light scattering study. Polymer, 2005, 46, 1982-1994.	3.8	92
2	Studies on Two Types of Built-in Inhomogeneities for Polymer Gels:Â Frozen Segmental Concentration Fluctuations and Spatial Distribution of Cross-Links. Macromolecules, 2003, 36, 6202-6212.	4.8	84
3	Controlling the morphology of polymer blends using periodic irradiation. Nature Materials, 2004, 3, 448-451.	27.5	76
4	Generation and Manipulation of Hierarchical Morphology in Interpenetrating Polymer Networks by Using Photochemical Reactions. Macromolecules, 2004, 37, 8495-8498.	4.8	54
5	Phase separation of polymer mixtures driven by photochemical reactions: current status and perspectives. Polymer International, 2017, 66, 213-222.	3.1	51
6	Dynamic Inhomogeneities in Polymer Gels Investigated by Dynamic Light Scattering. Macromolecules, 2004, 37, 2944-2953.	4.8	45
7	Phase Separation of Interpenetrating Polymer Networks Synthesized by Using an Autocatalytic Reaction. Macromolecules, 2006, 39, 9456-9466.	4.8	41
8	The roles of the Trommsdorff–Norrish effect in phase separation of binary polymer mixtures induced by photopolymerization. Polymer, 2014, 55, 1809-1816.	3.8	35
9	Simultaneous evaluation of ultrasound velocity, attenuation and density of polymer solutions observed by multi-echo ultrasound spectroscopy. Ultrasonics, 2011, 51, 215-222.	3.9	32
10	Tricontinuous Morphology of Ternary Polymer Blends Driven by Photopolymerization: Reaction and Phase Separation Kinetics. Macromolecules, 2014, 47, 4380-4386.	4.8	32
11	Influences of wetting and shrinkage on the phase separation process of polymer mixtures induced by photopolymerization. Soft Matter, 2013, 9, 8428.	2.7	30
12	Effects of Elastic Deformation on Phase Separation of a Polymer Blend Driven by a Reversible Photo-Cross-Linking Reaction. Macromolecules, 2007, 40, 5566-5574.	4.8	29
13	Autocatalytic phase separation and graded co-continuous morphology generated by photocuring. Soft Matter, 2006, 2, 149-156.	2.7	23
14	Designing a Polymer Blend with Phase Separation Tunable by Visible Light for Computer-Assisted Irradiation Experiments. Macromolecular Rapid Communications, 2006, 27, 758-762.	3.9	23
15	Dynamics of Microsphere Suspensions Probed by High-Frequency Dynamic Ultrasound Scattering. Macromolecules, 2009, 42, 752-759.	4.8	23
16	High Frequency Dynamic Ultrasound Scattering from Microsphere Suspensions. Polymer Journal, 2008, 40, 398-399.	2.7	22
17	Phase separation of polymer mixtures driven by photochemical reactions: Complexity and fascination. Current Opinion in Solid State and Materials Science, 2011, 15, 254-261.	11.5	22
18	Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses. Ultrasonics, 2018, 83, 171-178,	3.9	22

QUI TRAN-CONG-MIYATA

#	Article	IF	CITATIONS
19	Sound velocity and attenuation coefficient of hard and hollow microparticle suspensions observed by ultrasound spectroscopy. Ultrasonics, 2015, 62, 186-194.	3.9	21
20	Studies on Microscopic Structure of Solâ^'Gel Derived Nanohybrids Containing Heteropolyacid. Macromolecules, 2007, 40, 4165-4172.	4.8	20
21	Determination of particle size distribution and elastic properties of silica microcapsules by ultrasound spectroscopy. Japanese Journal of Applied Physics, 2016, 55, 07KC01.	1.5	20
22	Collective motion of microspheres in suspensions observed by phase-mode dynamic ultrasound scattering technique. Ultrasonics, 2012, 52, 628-635.	3.9	19
23	Simultaneous observation and analysis of sedimentation and floating motions of microspheres investigated by phase mode–dynamic ultrasound scattering. Journal of Applied Physics, 2009, 105, .	2.5	17
24	Local deformation in photo-crosslinked polymer blends monitored by Mach-Zehnder interferometry. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2898-2913.	2.1	16
25	Formation of Hierarchically Structured Polymer Films via Multiple Phase Separation Mediated by Intermittent Irradiation. Journal of Physical Chemistry Letters, 2013, 4, 3978-3982.	4.6	16
26	Dynamic Light Scattering Studies on Network Formation of Bridged Polysilsesquioxanes Catalyzed by Polyoxometalates. Macromolecules, 2003, 36, 9935-9942.	4.8	15
27	Simultaneous measurements of ultrasound attenuation, phase velocity, thickness, and density spectra of polymeric sheets. Ultrasonics, 2019, 99, 105974.	3.9	15
28	Particle size distribution analysis of oil-in-water emulsions using static and dynamic ultrasound scattering techniques. Ultrasonics, 2020, 108, 106117.	3.9	15
29	Polymer networks with bicontinuous gradient morphologies resulting from the competition between phase separation and photopolymerization. Soft Matter, 2016, 12, 1820-1829.	2.7	14
30	Dynamics of micron-sized particles in dilute and concentrated suspensions probed by dynamic ultrasound scattering techniques. Ultrasonics, 2016, 65, 59-68.	3.9	14
31	DLS and AFM Studies on the Cluster Evolution of Organically Modified Silica Gels Catalyzed by a Super Strong Acid. Macromolecules, 2007, 40, 3773-3778.	4.8	13
32	Origin of the anomalous decrease in the apparent density of polymer gels observed by multi-echo reflection ultrasound spectroscopy. Ultrasonics, 2013, 53, 973-978.	3.9	13
33	Effects of pulse repetition rate and incident beam energy on the dynamic ultrasound scattering data. Japanese Journal of Applied Physics, 2014, 53, 07KC10.	1.5	13
34	Hexagonal phase induced by a reversible photo-cross-link reaction in a polymer mixture. Physical Review E, 2008, 77, 020801.	2.1	12
35	Fast Ion and Electron Transport in a Supercapacitor Based on Monolithic Nanowireâ€Array Electrodes Prepared from a Defectâ€Free Anodic Aluminium Oxide Mold. Advanced Materials Interfaces, 2015, 2, 1500354.	3.7	11
36	Dynamics of nanometer- and submicrometer-sized particles in suspension probed by dynamic ultrasound scattering techniques. Journal of Applied Physics, 2017, 122, .	2.5	11

QUI TRAN-CONG-MIYATA

#	Article	IF	CITATIONS
37	Size distribution and elastic properties of thermo-responsive polymer gel microparticles in suspension probed by ultrasonic spectroscopy. Ultrasonics, 2018, 82, 31-38.	3.9	11
38	Effects of solvent on microstructure and proton conductivity of organic–inorganic hybrid membranes. Polymer, 2007, 48, 5681-5687.	3.8	9
39	Metal–Organic Coaxial Nanowire Array Electrodes Combining Large Energy Capacity and High Rate Capability. ChemSusChem, 2017, 10, 701-710.	6.8	9
40	Effects of Lightâ€Induced Regularity on the Physical Properties of Multiphase Polymers. Macromolecular Materials and Engineering, 2009, 294, 163-168.	3.6	8
41	Physical Aging of Photo-Crosslinked Poly(ethyl acrylate) Observed in the Nanometer Scales by Mach-Zehnder Interferometry. Polymer Journal, 2009, 41, 260-265.	2.7	8
42	Polymer materials with spatially graded morphologies: preparation, characterization and utilization. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 043003.	1.5	8
43	Metal Nanowire-Based Hybrid Electrodes Exhibiting High Charge/Discharge Rates and Long-Lived Electrocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 36350-36357.	8.0	8
44	Effects of Nanowire Length on Charge Transport in Vertically Aligned Gold Nanowire Array Electrodes. Langmuir, 2018, 34, 15674-15680.	3.5	8
45	Ultrasound attenuation and phase velocity of moderately concentrated silica suspensions. Ultrasonics, 2019, 93, 63-70.	3.9	8
46	Interpenetrating Polymer Networks with Spatially Graded Morphology Controllable by UV-Radiation Curing. Macromolecular Symposia, 2006, 242, 157-164.	0.7	7
47	THE ROLES OF REACTION INHOMOGENEITY IN PHASE SEPARATION KINETICS AND MORPHOLOGY OF REACTIVE POLYMER BLENDS. Chinese Journal of Polymer Science (English Edition), 2009, 27, 23.	3.8	7
48	Phase separation of polymer mixtures induced by light and heat: a comparative study by light scattering. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 045002.	1.5	6
49	Phase Separation of Polymer Blends Driven by Temporally and Spatially Periodic Forcing. ACS Symposium Series, 2003, , 276-290.	0.5	5
50	Phase separation kinetics and morphology induced by photopolymerization of 2-hydroxyehyl methacrylate (HEMA) in poly(ethyl acrylate)/HEMA mixtures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 015003.	1.5	5
51	Light Scattering Study on the Mode-Selection Process in Reversible Phase Separation of a Photoreactive Polymer Mixture. Journal of Physical Chemistry B, 2009, 113, 14950-14956.	2.6	4
52	Design and morphology control of polymer nanocomposites using light-driven phase separation phenomena. Journal of Family Business Management, 2010, 1, 013002.	3.4	4
53	Nanocrystals Assembled by the Chemical Reaction of the Dispersion Solvent. Angewandte Chemie - International Edition, 2020, 59, 13086-13092.	13.8	4
54	Phase Separation Kinetics and Morphology of Light-Induced IPN Confined in Micrometer Scales. Kobunshi Ronbunshu, 2007, 64, 294-300.	0.2	3

QUI TRAN-CONG-MIYATA

#	Article	IF	CITATIONS
55	Studies on Structural Characterization of Organic-Inorganic Proton Conductive Membranes. Kobunshi Ronbunshu, 2008, 65, 716-729.	0.2	3
56	Fabrication and proton conductivity of sulfonated silica composites prepared by postoxidization of mercaptomethoxysilane. Journal of Polymer Science Part A, 2012, 50, 3295-3302.	2.3	3
57	Controlling the nano-deformation of polymer by a reversible photo-cross-linking reaction. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 025003.	1.5	3
58	Interfacial structures of particle-stabilized emulsions examined by ultrasonic scattering analysis with a core–shell model. Ultrasonics, 2021, 116, 106510.	3.9	3
59	Phase Separation and Morphology of Polymer Mixtures Driven by Light. Series in Sof Condensed Matter, 2009, , 171-195.	0.1	3
60	Patterning Silver Nanowires by Inducing Transient Concentration Gradients in Reaction Mixtures. ACS Applied Materials & Interfaces, 2021, 13, 60462-60470.	8.0	3
61	Influence of Alkyl Chain Length in Methacrylate Monomers on the Phase Separation Induced by Photo-Polymerization. Kobunshi Ronbunshu, 2015, 72, 630-641.	0.2	2
62	Conducting polymer networks synthesized by photopolymerization-induced phase separation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 015009.	1.5	2
63	Structures and dynamics of carbon-black in suspension probed by static and dynamic ultrasound scattering techniques. Ultrasonics, 2019, 94, 192-201.	3.9	2
64	Photoreaction-induced phase separation and morphology control in ternary IPNs blends involving 3D spherical dendrimer. Soft Matter, 2011, 7, 10556.	2.7	1
65	Effects of molecular weight on the local deformation of photo-cross-linked polymer blends studied by Mach–Zehnder interferometry. Polymer Journal, 2014, 46, 819-822.	2.7	1
66	Applications of Mach-Zehnder Interferometry to Studies on Local Deformation of Polymers Under Photocuring. , 2017, , .		1
67	Metastable Nanoporous Palladium Evolving from Palladium Nanocrystals. ChemNanoMat, O, , .	2.8	1
68	In Focus section: Polymer Research at Kyoto Institute of Technology (KIT), Japan. Polymer International, 2017, 66, 165-166.	3.1	0
69	A Novel Structural Analysis Technique for Particle Suspensions with the Size Ranging from Nanometers to Micrometers by Ultrasound Scattering. Kobunshi Ronbunshu, 2017, 74, 319-333.	0.2	0
70	Nanocrystals Assembled by the Chemical Reaction of the Dispersion Solvent. Angewandte Chemie, 2020, 132, 13186-13192.	2.0	0
71	Unidirectional Bi-Continuous Morphology of Polymer Blends Undergoing Photopolymerization-Induced Phase Separation by Computer-Assisted Irradiation (CAI) Method. Kobunshi Ronbunshu, 2017, 74, 233-238.	0.2	0