List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1212731/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature<br>Reviews Neuroscience, 2006, 7, 697-709.                                                                                                                          | 4.9  | 1,472     |
| 2  | Delaying the onset of Huntington's in mice. Nature, 2000, 404, 721-722.                                                                                                                                                                                                | 13.7 | 475       |
| 3  | Environmental Enrichment Rescues Protein Deficits in a Mouse Model of Huntington's Disease,<br>Indicating a Possible Disease Mechanism. Journal of Neuroscience, 2004, 24, 2270-2276.                                                                                  | 1.7  | 342       |
| 4  | Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in<br>human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type<br>huntingtin dosage. Human Molecular Genetics, 2007, 16, 1845-1861. | 1.4  | 304       |
| 5  | Environmental enrichment slows disease progression in R6/2 Huntington's disease mice. Annals of Neurology, 2002, 51, 235-242.                                                                                                                                          | 2.8  | 303       |
| 6  | Tandem repeats mediating genetic plasticity in health and disease. Nature Reviews Genetics, 2018, 19, 286-298.                                                                                                                                                         | 7.7  | 300       |
| 7  | The neurobiology of brain and cognitive reserve: Mental and physical activity as modulators of brain disorders. Progress in Neurobiology, 2009, 89, 369-382.                                                                                                           | 2.8  | 273       |
| 8  | Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiology of Disease, 2008, 31, 159-168.                                                                                                                  | 2.1  | 265       |
| 9  | Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic<br>factor expression deficits in huntington's disease transgenic mice. Neuroscience, 2006, 141, 569-584.                                                              | 1.1  | 245       |
| 10 | PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature<br>Neuroscience, 2001, 4, 282-288.                                                                                                                                | 7.1  | 210       |
| 11 | Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiology of Disease, 2020, 134, 104621.                                                                                                                    | 2.1  | 210       |
| 12 | Review: Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experienceâ€dependent plasticity. Neuropathology and Applied Neurobiology, 2014, 40, 13-25.                            | 1.8  | 197       |
| 13 | Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Translational Psychiatry, 2016, 6, e837-e837.                                                               | 2.4  | 190       |
| 14 | The Role of Epigenetic Change in Autism Spectrum Disorders. Frontiers in Neurology, 2015, 6, 107.                                                                                                                                                                      | 1.1  | 186       |
| 15 | Gene–environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice. Neurobiology of Disease, 2008, 29, 490-504.                                                                       | 2.1  | 176       |
| 16 | Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett<br>syndrome – <i>Mecp2</i> gene dosage effects and BDNF expression. European Journal of Neuroscience,<br>2008, 27, 3342-3350.                                               | 1.2  | 174       |
| 17 | Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. European Journal of Neuroscience, 2004, 19, 2799-2807.                                                                               | 1.2  | 172       |
| 18 | Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington's disease. Human Molecular Genetics, 2009, 18, 753-766.                                                                          | 1.4  | 171       |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine.<br>European Journal of Neuroscience, 2005, 22, 2081-2088.                                                                                      | 1.2 | 170       |
| 20 | Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: effects of environmental enrichment. European Journal of Neuroscience, 2006, 23, 1829-1838.                                                                                 | 1.2 | 151       |
| 21 | Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology, 2013, 64, 515-528.                                                                                           | 2.0 | 145       |
| 22 | Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for<br>Huntington's disease. Brain Research Reviews, 2008, 58, 209-225.                                                                                   | 9.1 | 144       |
| 23 | Decreased hippocampal cell proliferation in R6/1 Huntington's mice. NeuroReport, 2004, 15, 811-813.                                                                                                                                                  | 0.6 | 142       |
| 24 | Wheel running and environmental enrichment differentially modify exonâ€specific BDNF expression in<br>the hippocampus of wildâ€type and preâ€motor symptomatic male and female Huntington's disease mice.<br>Hippocampus, 2010, 20, 621-636.         | 0.9 | 139       |
| 25 | Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for â€~missing heritability'. Trends in Genetics, 2010, 26, 59-65.                                                                                                  | 2.9 | 137       |
| 26 | Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Translational Psychiatry, 2017, 7, e1114-e1114.                                                        | 2.4 | 134       |
| 27 | Delayed onset of huntington′s disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience, 2004, 123, 207-212.                                                                                | 1.1 | 131       |
| 28 | Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5<br>knockout mouse: association with N-methyl-d-aspartic acid receptor up-regulation. International<br>Journal of Neuropsychopharmacology, 2009, 12, 45. | 1.0 | 125       |
| 29 | Characterization of nodular neuronal heterotopia in children. Brain, 1999, 122, 219-238.                                                                                                                                                             | 3.7 | 119       |
| 30 | Simple sequence repeats: genetic modulators of brain function and behavior. Trends in Neurosciences, 2008, 31, 328-334.                                                                                                                              | 4.2 | 118       |
| 31 | Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington's disease.<br>Neurobiology of Disease, 2020, 135, 104268.                                                                                                       | 2.1 | 118       |
| 32 | Phospholipase C-β1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Molecular Psychiatry, 2008, 13, 661-672.                                                  | 4.1 | 117       |
| 33 | N-Acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington's disease mice.<br>NeuroReport, 2000, 11, 3751-3757.                                                                                                             | 0.6 | 106       |
| 34 | N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington's disease. Translational Psychiatry, 2015, 5, e492-e492.                                                                  | 2.4 | 105       |
| 35 | Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington's disease. BMC Neuroscience, 2008, 9, 34.                                                      | 0.8 | 104       |
| 36 | Deficits in Experience-Dependent Cortical Plasticity and Sensory-Discrimination Learning in Presymptomatic Huntington's Disease Mice. Journal of Neuroscience, 2005, 25, 3059-3066.                                                                  | 1.7 | 103       |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Gut dysbiosis in Huntington's disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Communications, 2020, 2, fcaa110.                                                                                       | 1.5 | 98        |
| 38 | Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington's disease. Neuroscience, 2009, 163, 456-465.                                                                                   | 1.1 | 97        |
| 39 | REGULATORS OF ADULT NEUROGENESIS IN THE HEALTHY AND DISEASED BRAIN. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 533-545.                                                                                                        | 0.9 | 93        |
| 40 | Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Molecular Psychiatry, 2019, 24, 536-548.                                                                  | 4.1 | 89        |
| 41 | Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS<br>Journal, 2005, 272, 2347-2361.                                                                                                                    | 2.2 | 87        |
| 42 | Dynamic mutations as digital genetic modulators of brain development, function and dysfunction.<br>BioEssays, 2007, 29, 525-535.                                                                                                                     | 1.2 | 84        |
| 43 | Sexâ€specific disruptions in spatial memory and anhedonia in a "two hit―rat model correspond with alterations in hippocampal brainâ€derived neurotrophic factor expression and signaling. Hippocampus, 2014, 24, 1197-1211.                          | 0.9 | 84        |
| 44 | Environmental factors as modulators of neurodegeneration: Insights from gene–environment<br>interactions in Huntington's disease. Neuroscience and Biobehavioral Reviews, 2015, 52, 178-192.                                                         | 2.9 | 84        |
| 45 | Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of<br>synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's<br>disease. Neuroscience, 2013, 251, 66-74.     | 1.1 | 77        |
| 46 | Toxoplasmosis: A pathway to neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 2019, 96, 72-92.                                                                                                                                     | 2.9 | 72        |
| 47 | Activity-dependent Regulation of Synapse and Dendritic Spine Morphology in Developing Barrel Cortex<br>Requires Phospholipase C-Â1 Signalling. Cerebral Cortex, 2005, 15, 385-393.                                                                   | 1.6 | 71        |
| 48 | Sexually Dimorphic Serotonergic Dysfunction in a Mouse Model of Huntington's Disease and Depression. PLoS ONE, 2011, 6, e22133.                                                                                                                      | 1.1 | 71        |
| 49 | A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Molecular Autism, 2015, 6, 62.                                                                                                    | 2.6 | 66        |
| 50 | Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington's disease transgenic mice. Neuroscience, 2010, 170, 324-336.                                                                                                   | 1.1 | 65        |
| 51 | Intracellular Localization of Tropomyosin mRNA and Protein Is Associated with Development of Neuronal Polarity. Molecular and Cellular Neurosciences, 1995, 6, 397-412.                                                                              | 1.0 | 63        |
| 52 | Treatment of depressiveâ€like behaviour in Huntington's disease mice by chronic sertraline and exercise.<br>British Journal of Pharmacology, 2012, 165, 1375-1389.                                                                                   | 2.7 | 63        |
| 53 | Olfactory abnormalities in Huntington's disease: Decreased plasticity in the primary olfactory cortex<br>of R6/1 transgenic mice and reduced olfactory discrimination in patients. Brain Research, 2007, 1151,<br>219-226.                           | 1.1 | 62        |
| 54 | Depressionâ€related behaviours displayed by female <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> mice<br>during abstinence from chronic ethanol consumption are rescued by wheelâ€running. European<br>Journal of Neuroscience, 2013, 37, 1803-1810. | 1.2 | 62        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiology of Disease, 2012, 46, 722-731.                                                                                         | 2.1  | 61        |
| 56 | Noninvasive Strategies to Optimise Brain Plasticity: From Basic Research to Clinical Perspectives.<br>Neural Plasticity, 2013, 2013, 1-2.                                                                                                             | 1.0  | 60        |
| 57 | Structural Compartments within Neurons: Developmentally Regulated Organization of Microfilament<br>Isoform mRNA and Protein. Molecular and Cellular Neurosciences, 1998, 11, 289-304.                                                                 | 1.0  | 58        |
| 58 | Enviromimetics: exploring gene environment interactions to identify therapeutic targets for brain disorders. Expert Opinion on Therapeutic Targets, 2007, 11, 899-913.                                                                                | 1.5  | 58        |
| 59 | Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice<br>Lacking Metabotropic Glutamate Receptor 5. Neuropsychopharmacology, 2015, 40, 1947-1956.                                                                | 2.8  | 58        |
| 60 | Decanalization, brain development and risk of schizophrenia. Translational Psychiatry, 2011, 1, e14-e14.                                                                                                                                              | 2.4  | 57        |
| 61 | Anterior cingulate cortical transplantation in transgenic Huntington's disease mice. Brain Research<br>Bulletin, 2001, 56, 313-318.                                                                                                                   | 1.4  | 56        |
| 62 | PLCâ€Î²1 knockout mice as a model of disrupted cortical development and plasticity: Behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus, 2008, 18, 824-834.                                                              | 0.9  | 55        |
| 63 | Environmental enrichment rescues female-specific hyperactivity of the hypothalamic-pituitary-adrenal<br>axis in a model of Huntington's disease. Translational Psychiatry, 2012, 2, e133-e133.                                                        | 2.4  | 55        |
| 64 | Exercise mimetics: harnessing the therapeutic effects of physical activity. Nature Reviews Drug Discovery, 2021, 20, 862-879.                                                                                                                         | 21.5 | 55        |
| 65 | Gene–environment interactions and construct validity in preclinical models of psychiatric disorders.<br>Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1376-1382.                                                          | 2.5  | 54        |
| 66 | Environmental enrichment enhances cognitive flexibility in C57BL/6 mice on a touchscreen reversal<br>learning task. Neuropharmacology, 2017, 117, 219-226.                                                                                            | 2.0  | 53        |
| 67 | Mechanisms mediating brain and cognitive reserve: Experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 331-339. | 2.5  | 52        |
| 68 | Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease.<br>Progress in Neurobiology, 2017, 153, 18-45.                                                                                                        | 2.8  | 52        |
| 69 | Search strategy selection in the Morris water maze indicates allocentric map formation during<br>learning that underpins spatial memory formation. Neurobiology of Learning and Memory, 2017, 139,<br>37-49.                                          | 1.0  | 52        |
| 70 | Gene-environment interactions informing therapeutic approaches to cognitive and affective disorders. Neuropharmacology, 2019, 145, 37-48.                                                                                                             | 2.0  | 52        |
| 71 | An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington's disease. Neurobiology of Disease, 2021, 148, 105199.                                                                | 2.1  | 52        |
| 72 | Phospholipase C-β1 expression correlates with neuronal differentiation and synaptic plasticity in rat somatosensory cortex. Neuropharmacology, 1998, 37, 593-605.                                                                                     | 2.0  | 51        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genetic and environmental factors in the pathogenesis of Huntington's disease. Neurogenetics, 2004,<br>5, 9-17.                                                                                                                                       | 0.7 | 51        |
| 74 | GENE–ENVIRONMENT INTERACTIONS, NEURONAL DYSFUNCTION AND PATHOLOGICAL PLASTICITY IN HUNTINGTON'S DISEASE. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 1007-1019.                                                                  | 0.9 | 50        |
| 75 | Sexâ€specific behavioural effects of environmental enrichment in a transgenic mouse model of<br>amyotrophic lateral sclerosis. European Journal of Neuroscience, 2008, 28, 717-723.                                                                   | 1.2 | 49        |
| 76 | Hippocampal Neurogenesis, Cognitive Deficits and Affective Disorder in Huntington's Disease. Neural Plasticity, 2012, 2012, 1-7.                                                                                                                      | 1.0 | 48        |
| 77 | Neurocardiac dysregulation and neurogenic arrhythmias in a transgenic mouse model of<br>Huntington's disease. Journal of Physiology, 2012, 590, 5845-5860.                                                                                            | 1.3 | 47        |
| 78 | Increased adult hippocampal neurogenesis and abnormal migration of adultâ€born granule neurons is<br>associated with hippocampalâ€specific cognitive deficits in phospholipase Câ€Î²1 knockout mice.<br>Hippocampus, 2012, 22, 309-319.               | 0.9 | 45        |
| 79 | Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology, 2017, 77, 225-235.                                                                                         | 1.3 | 45        |
| 80 | Transgenerational paternal transmission of acquired traits: stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Current Opinion in Behavioral Sciences, 2017, 14, 140-147.                                    | 2.0 | 44        |
| 81 | Pathogenic Infection in Male Mice Changes Sperm Small RNA Profiles and Transgenerationally Alters<br>Offspring Behavior. Cell Reports, 2020, 31, 107573.                                                                                              | 2.9 | 44        |
| 82 | Modeling Brain Reserve: Experience-Dependent Neuronal Plasticity in Healthy and Huntington's Disease<br>Transgenic Mice. American Journal of Geriatric Psychiatry, 2009, 17, 196-209.                                                                 | 0.6 | 43        |
| 83 | Decreased expression of mGluR5 within the dorsolateral prefrontal cortex in autism and increased microglial number in mGluR5 knockout mice: Pathophysiological and neurobehavioral implications.<br>Brain, Behavior, and Immunity, 2015, 49, 197-205. | 2.0 | 43        |
| 84 | Dissociating the therapeutic effects of environmental enrichment and exercise in a mouse model of anxiety with cognitive impairment. Translational Psychiatry, 2016, 6, e794-e794.                                                                    | 2.4 | 43        |
| 85 | Epigenetic modifications in trinucleotide repeat diseases. Trends in Molecular Medicine, 2013, 19, 655-663.                                                                                                                                           | 3.5 | 42        |
| 86 | Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the<br>Huntington's disease affected brain. Human Molecular Genetics, 2014, 23, 4051-4063.                                                               | 1.4 | 41        |
| 87 | Mutation of Gtf2ird1 from the Williams–Beuren syndrome critical region results in facial dysplasia,<br>motor dysfunction, and altered vocalisations. Neurobiology of Disease, 2012, 45, 913-922.                                                      | 2.1 | 40        |
| 88 | Cortisol and depression in pre-diagnosed and early stage Huntington's disease.<br>Psychoneuroendocrinology, 2013, 38, 2439-2447.                                                                                                                      | 1.3 | 40        |
| 89 | Differential effects of early environmental enrichment on emotionality related behaviours in Huntington's disease transgenic mice. Journal of Physiology, 2013, 591, 41-55.                                                                           | 1.3 | 40        |
| 90 | Environmental enrichment as an experience-dependent modulator of social plasticity and cognition.<br>Brain Research, 2019, 1717, 1-14.                                                                                                                | 1.1 | 39        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | ldentifying novel interventional strategies for psychiatric disorders: integrating genomics,<br>â€~enviromics' and gene–environment interactions in valid preclinical models. British Journal of<br>Pharmacology, 2014, 171, 4719-4728.           | 2.7 | 38        |
| 92  | Diet-Induced Modification of the Sperm Epigenome Programs Metabolism and Behavior. Trends in Endocrinology and Metabolism, 2020, 31, 131-149.                                                                                                     | 3.1 | 38        |
| 93  | Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease. Neurobiology of Disease, 2012, 45, 887-896.                                                                    | 2.1 | 37        |
| 94  | Impaired learning-dependent cortical plasticity in Huntington's disease transgenic mice. Neurobiology of Disease, 2004, 17, 427-434.                                                                                                              | 2.1 | 36        |
| 95  | Effects of chronic stress on the onset and progression of Huntington's disease in transgenic mice.<br>Neurobiology of Disease, 2014, 71, 81-94.                                                                                                   | 2.1 | 36        |
| 96  | Long-term effects of combined neonatal and adolescent stress on brain-derived neurotrophic factor<br>and dopamine receptor expression in the rat forebrain. Biochimica Et Biophysica Acta - Molecular Basis<br>of Disease, 2014, 1842, 2126-2135. | 1.8 | 35        |
| 97  | â€~Super-Enrichment' Reveals Dose-Dependent Therapeutic Effects of Environmental Stimulation in a<br>Transgenic Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2014, 3, 299-309.                                           | 0.9 | 35        |
| 98  | Neurological, neuropsychiatric and neurodevelopmental complications of COVID-19. Australian and<br>New Zealand Journal of Psychiatry, 2021, 55, 750-762.                                                                                          | 1.3 | 35        |
| 99  | TRPing up the genome: Tandem repeat polymorphisms as dynamic sources of genetic variability in health and disease. Discovery Medicine, 2010, 10, 314-21.                                                                                          | 0.5 | 35        |
| 100 | N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington's<br>disease. Human Molecular Genetics, 2016, 25, ddw144.                                                                                              | 1.4 | 34        |
| 101 | Cognitive endophenotypes, gene–environment interactions and experience-dependent plasticity in<br>animal models of schizophrenia. Biological Psychology, 2016, 116, 82-89.                                                                        | 1.1 | 34        |
| 102 | Expression of doublecortin correlates with neuronal migration and pattern formation in diverse regions of the developing chick brain. Journal of Neuroscience Research, 1999, 55, 650-657.                                                        | 1.3 | 33        |
| 103 | Environmental Enrichment Reduces Neuronal Intranuclear Inclusion Load But Has No Effect on<br>Messenger RNA Expression in a Mouse Model of Huntington Disease. Journal of Neuropathology and<br>Experimental Neurology, 2010, 69, 817-827.        | 0.9 | 33        |
| 104 | Touchscreen testing reveals clinically relevant cognitive abnormalities in a mouse model of schizophrenia lacking metabotropic glutamate receptor 5. Scientific Reports, 2018, 8, 16412.                                                          | 1.6 | 33        |
| 105 | Translational Assays for Assessment of Cognition in Rodent Models of Alzheimer's Disease and<br>Dementia. Journal of Molecular Neuroscience, 2016, 60, 371-382.                                                                                   | 1.1 | 32        |
| 106 | What's wrong with my mouse cage? Methodological considerations for modeling lifestyle factors<br>and gene–environment interactions in mice. Journal of Neuroscience Methods, 2016, 265, 99-108.                                                   | 1.3 | 32        |
| 107 | Investigating the relationships between hypothalamic volume and measures of circadian rhythm and<br>habitual sleep in premanifest Huntington's disease. Neurobiology of Sleep and Circadian Rhythms, 2019,<br>6, 1-8.                             | 1.4 | 32        |
| 108 | Positive environmental modification of depressive phenotype and abnormal<br>hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic<br>ethanol consumption. Frontiers in Pharmacology, 2013, 4, 93.   | 1.6 | 31        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Environmental enrichment reduces innate anxiety with no effect on depression-like behaviour in mice<br>lacking the serotonin transporter. Behavioural Brain Research, 2017, 332, 355-361.                           | 1.2 | 31        |
| 110 | Deficits in Spermatogenesis but not Neurogenesis are Alleviated by Chronic Testosterone Therapy in<br>R6/1 Huntington's Disease Mice. Journal of Neuroendocrinology, 2012, 24, 341-356.                             | 1.2 | 30        |
| 111 | Phospholipase C Beta 1 Expression in the Dorsolateral Prefrontal Cortex from Patients with<br>Schizophrenia at Different Stages of Illness. Australian and New Zealand Journal of Psychiatry, 2011,<br>45, 140-147. | 1.3 | 29        |
| 112 | The influence of the HPG axis on stress response and depressive-like behaviour in a transgenic mouse model of Huntington's disease. Experimental Neurology, 2015, 263, 63-71.                                       | 2.0 | 29        |
| 113 | Why Woody got the blues: The neurobiology of depression in Huntington's disease. Neurobiology of<br>Disease, 2020, 142, 104958.                                                                                     | 2.1 | 29        |
| 114 | Impaired basal and running-induced hippocampal neurogenesis coincides with reduced Akt signaling in adult R6/1 HD mice. Molecular and Cellular Neurosciences, 2013, 54, 93-107.                                     | 1.0 | 28        |
| 115 | A Tale of Two Maladies? Pathogenesis of Depression with and without the Huntington's Disease Gene<br>Mutation. Frontiers in Neurology, 2013, 4, 81.                                                                 | 1.1 | 28        |
| 116 | Impaired social behaviour and molecular mediators of associated neural circuits during chronic<br>Toxoplasma gondii infection in female mice. Brain, Behavior, and Immunity, 2019, 80, 88-108.                      | 2.0 | 28        |
| 117 | International data governance for neuroscience. Neuron, 2022, 110, 600-612.                                                                                                                                         | 3.8 | 28        |
| 118 | High stress hormone levels accelerate the onset of memory deficits in male Huntington's disease mice.<br>Neurobiology of Disease, 2014, 69, 248-262.                                                                | 2.1 | 27        |
| 119 | Differential induction and intracellular localization of SCG10 messenger RNA is associated with neuronal differentiation. Neuroscience, 1996, 72, 889-900.                                                          | 1.1 | 26        |
| 120 | Molecular mechanisms mediating pathological plasticity in Huntington's disease and Alzheimer's disease. Journal of Neurochemistry, 2007, 100, 874-882.                                                              | 2.1 | 26        |
| 121 | Elevated paternal glucocorticoid exposure modifies memory retention in female offspring.<br>Psychoneuroendocrinology, 2017, 83, 9-18.                                                                               | 1.3 | 26        |
| 122 | The effects of short-term and long-term environmental enrichment on locomotion, mood-like<br>behavior, cognition and hippocampal gene expression. Behavioural Brain Research, 2019, 368, 111917.                    | 1.2 | 26        |
| 123 | Effect of enhanced voluntary physical exercise on brain levels of monoamines in Huntington disease mice. PLOS Currents, 2011, 3, RRN1281.                                                                           | 1.4 | 26        |
| 124 | Novel therapeutic targets for Huntington's disease. Expert Opinion on Therapeutic Targets, 2005, 9,<br>639-650.                                                                                                     | 1.5 | 25        |
| 125 | Effects of environmental manipulations in genetically targeted animal models of affective disorders.<br>Neurobiology of Disease, 2013, 57, 12-27.                                                                   | 2.1 | 25        |
| 126 | Short-term memory acquisition in female Huntington's disease mice is vulnerable to acute stress.<br>Behavioural Brain Research, 2013, 253, 318-322.                                                                 | 1.2 | 25        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Vascular Endothelial Growth Factor and Brain-Derived Neurotrophic Factor in Quetiapine Treated<br>First-Episode Psychosis. Schizophrenia Research and Treatment, 2014, 2014, 1-10.                                   | 0.7  | 23        |
| 128 | Transcriptional profiles for distinct aggregation states of mutant Huntingtin exon 1 protein unmask new Huntington's disease pathways. Molecular and Cellular Neurosciences, 2017, 83, 103-112.                      | 1.0  | 23        |
| 129 | Therapeutic Effects of Anthocyanins and Environmental Enrichment in R6/1 Huntington's Disease Mice.<br>Journal of Huntington's Disease, 2016, 5, 285-296.                                                            | 0.9  | 22        |
| 130 | Affective dysfunction in a mouse model of <scp>R</scp> ett syndrome: Therapeutic effects of environmental stimulation and physical activity. Developmental Neurobiology, 2016, 76, 209-224.                          | 1.5  | 22        |
| 131 | Neuroendocrine and neurotrophic signaling in Huntington's disease: Implications for pathogenic mechanisms and treatment strategies. Neuroscience and Biobehavioral Reviews, 2016, 71, 444-454.                       | 2.9  | 21        |
| 132 | Editorial: Environmental Enrichment: Enhancing Neural Plasticity, Resilience, and Repair. Frontiers in<br>Behavioral Neuroscience, 2019, 13, 75.                                                                     | 1.0  | 21        |
| 133 | Of â€~junk food' and â€~brain food': how parental diet influences offspring neurobiology and behaviour.<br>Trends in Endocrinology and Metabolism, 2021, 32, 566-578.                                                | 3.1  | 21        |
| 134 | Development of Thalamocortical Projections in Normal and Mutant Mice. Results and Problems in Cell Differentiation, 2000, 30, 293-332.                                                                               | 0.2  | 21        |
| 135 | Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discovery Medicine, 2014, 17, 25-35.                                                                                                  | 0.5  | 21        |
| 136 | Isoform specific differences in phospholipase C beta 1 expression in the prefrontal cortex in schizophrenia and suicide. NPJ Schizophrenia, 2017, 3, 19.                                                             | 2.0  | 20        |
| 137 | Transgenic Mouse Models as Tools for Understanding How Increased Cognitive and Physical<br>Stimulation Can Improve Cognition in Alzheimer's Disease. Brain Plasticity, 2018, 4, 127-150.                             | 1.9  | 20        |
| 138 | Towards Environmental Construct Validity in Animal Models of CNS Disorders: Optimizing<br>Translation of Preclinical Studies. CNS and Neurological Disorders - Drug Targets, 2013, 12, 587-592.                      | 0.8  | 20        |
| 139 | Gene-environment-gut interactions in Huntington's disease mice are associated with environmental modulation of the gut microbiome. IScience, 2022, 25, 103687.                                                       | 1.9  | 20        |
| 140 | The relationship between cortisol and verbal memory in the early stages of Huntington's disease.<br>Journal of Neurology, 2013, 260, 891-902.                                                                        | 1.8  | 19        |
| 141 | Brain Cholesterol Synthesis and Metabolism is Progressively Disturbed in the R6/1 Mouse Model of<br>Huntington's Disease: A Targeted GC-MS/MS Sterol Analysis. Journal of Huntington's Disease, 2015, 4,<br>305-318. | 0.9  | 19        |
| 142 | Repeat DNA expands our understanding of autism spectrum disorder. Nature, 2021, 589, 200-202.                                                                                                                        | 13.7 | 19        |
| 143 | Molecular mediators, environmental modulators and experience-dependent synaptic dysfunction in<br>Huntington's disease Acta Biochimica Polonica, 2019, 51, 415-430.                                                  | 0.3  | 19        |
| 144 | Dissecting Cause and Effect in the Pathogenesis of Psychiatric Disorders: Genes, Environment and<br>Behaviour. Current Molecular Medicine, 2007, 7, 470-478.                                                         | 0.6  | 18        |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Reduced susceptibility to induced seizures in the Neuroligin-3R451C mouse model of autism.<br>Neuroscience Letters, 2015, 589, 57-61.                                                                                                                                                                      | 1.0 | 18        |
| 146 | Mutations in neuroligin-3 in male mice impact behavioral flexibility but not relational memory in a touchscreen test of visual transitive inference. Molecular Autism, 2019, 10, 42.                                                                                                                       | 2.6 | 18        |
| 147 | Novel approaches to alcohol rehabilitation: Modification of stress-responsive brain regions through environmental enrichment. Neuropharmacology, 2019, 145, 25-36.                                                                                                                                         | 2.0 | 18        |
| 148 | Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behavioural Brain Research, 2020, 383, 112501.                                                                                                                                    | 1.2 | 18        |
| 149 | Evaluation of attention in APP/PS1 mice shows impulsive and compulsive behaviours. Genes, Brain and Behavior, 2021, 20, e12594.                                                                                                                                                                            | 1.1 | 18        |
| 150 | Short-term environmental enrichment, and not physical exercise, alleviate cognitive decline and<br>anxiety from middle age onwards without affecting hippocampal gene expression. Cognitive, Affective<br>and Behavioral Neuroscience, 2019, 19, 1143-1169.                                                | 1.0 | 17        |
| 151 | Antidepressant-like effects of ketamine in a mouse model of serotonergic dysfunction.<br>Neuropharmacology, 2020, 168, 107998.                                                                                                                                                                             | 2.0 | 17        |
| 152 | Decanalization mediating gene-environment interactions in schizophrenia and other psychiatric disorders with neurodevelopmental etiology. Frontiers in Behavioral Neuroscience, 2013, 7, 157.                                                                                                              | 1.0 | 16        |
| 153 | Microbiome Profiling Reveals Gut Dysbiosis in the Metabotropic Glutamate Receptor 5 Knockout<br>Mouse Model of Schizophrenia. Frontiers in Cell and Developmental Biology, 2020, 8, 582320.                                                                                                                | 1.8 | 16        |
| 154 | Antidepressant-Like Effect of the Norepinephrine-Dopamine Reuptake Inhibitor Bupropion in a Mouse<br>Model of Huntington's Disease with Dopaminergic Dysfunction. Journal of Huntington's Disease, 2012,<br>1, 261-266.                                                                                    | 0.9 | 16        |
| 155 | Tandem Repeat Polymorphisms. Advances in Experimental Medicine and Biology, 2012, , 1-9.                                                                                                                                                                                                                   | 0.8 | 15        |
| 156 | Brain Zinc Deficiency Exacerbates Cognitive Decline in the R6/1 Model of Huntington's Disease.<br>Neurotherapeutics, 2020, 17, 243-251.                                                                                                                                                                    | 2.1 | 15        |
| 157 | Behavioural state differentially engages septohippocampal cholinergic and GABAergic neurons in R6/1<br>Huntington's disease mice. Neurobiology of Learning and Memory, 2012, 97, 261-270.                                                                                                                  | 1.0 | 14        |
| 158 | Social Isolation Alters Social and Mating Behavior in the R451C Neuroligin Mouse Model of Autism.<br>Neural Plasticity, 2017, 2017, 1-9.                                                                                                                                                                   | 1.0 | 14        |
| 159 | Sensitivity to MK-801 in phospholipase C-β1 knockout mice reveals a specific NMDA receptor deficit.<br>International Journal of Neuropsychopharmacology, 2009, 12, 917.                                                                                                                                    | 1.0 | 13        |
| 160 | Sex-Dependent Effects of Environmental Enrichment on Spatial Memory and Brain-Derived<br>Neurotrophic Factor (BDNF) Signaling in a Developmental "Two-Hit―Mouse Model Combining BDNF<br>Haploinsufficiency and Chronic Glucocorticoid Stimulation. Frontiers in Behavioral Neuroscience,<br>2018, 12, 227. | 1.0 | 13        |
| 161 | Parental mental health before and during pregnancy and offspring birth outcomes: A 20-year preconception cohort of maternal and paternal exposure. EClinicalMedicine, 2020, 27, 100564.                                                                                                                    | 3.2 | 13        |
| 162 | Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered<br>gait. Experimental Neurology, 2013, 249, 8-19.                                                                                                                                                       | 2.0 | 12        |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Tandem Repeats and Repeatomes: Delving Deeper into the â€~Dark Matter' of Genomes. EBioMedicine, 2018, 31, 3-4.                                                                                                                                                           | 2.7 | 12        |
| 164 | Synaptopathy, circuitopathy and the computational biology of Huntington's disease. BMC Biology, 2018, 16, 71.                                                                                                                                                             | 1.7 | 12        |
| 165 | Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3<br>R451C mouse model of autism spectrum disorder. Pharmacology Biochemistry and Behavior, 2020, 195,<br>172955.                                                        | 1.3 | 12        |
| 166 | The Latent Stem Cell Population Is Retained in the Hippocampus of Transgenic Huntington's Disease<br>Mice but Not Wild-Type Mice. PLoS ONE, 2011, 6, e18153.                                                                                                              | 1.1 | 12        |
| 167 | Tandem repeat polymorphisms: Mediators of genetic plasticity, modulators of biological diversity and dynamic sources of disease susceptibility. Advances in Experimental Medicine and Biology, 2012, 769, 1-9.                                                            | 0.8 | 12        |
| 168 | A Neuroethics Framework for the Australian Brain Initiative. Neuron, 2019, 101, 365-369.                                                                                                                                                                                  | 3.8 | 11        |
| 169 | Small Non-coding RNAs Are Dysregulated in Huntington's Disease Transgenic Mice Independently of the Therapeutic Effects of an Environmental Intervention. Molecular Neurobiology, 2021, 58, 3308-3318.                                                                    | 1.9 | 11        |
| 170 | Mice with an autismâ€associated <scp>R451C</scp> mutation in neuroliginâ€3 show a cautious but<br>accurate response style in touchscreen attention tasks. Genes, Brain and Behavior, 2022, 21, e12757.                                                                    | 1.1 | 11        |
| 171 | Quantitative Phosphoproteomics Reveals Extensive Protein Phosphorylation Dysregulation in the<br>Cerebral Cortex of Huntington's Disease Mice Prior to Onset of Symptoms. Molecular Neurobiology,<br>2022, 59, 2456-2471.                                                 | 1.9 | 11        |
| 172 | Alterations in the Gut Fungal Community in a Mouse Model of Huntington's Disease. Microbiology<br>Spectrum, 2022, 10, e0219221.                                                                                                                                           | 1.2 | 11        |
| 173 | Sexually dimorphic dopaminergic dysfunction in a transgenic mouse model of Huntington's disease.<br>Pharmacology Biochemistry and Behavior, 2014, 127, 15-20.                                                                                                             | 1.3 | 10        |
| 174 | Novel ethological endophenotypes in a transgenic mouse model of Huntington's disease. Behavioural<br>Brain Research, 2015, 276, 17-27.                                                                                                                                    | 1.2 | 10        |
| 175 | Huntington's Disease: Pathogenic Mechanisms and Therapeutic Targets. Advances in Neurobiology, 2017, 15, 93-128.                                                                                                                                                          | 1.3 | 10        |
| 176 | Short-Term Environmental Stimulation Spatiotemporally Modulates Specific Serotonin Receptor Gene<br>Expression and Behavioral Pharmacology in a Sexually Dimorphic Manner in Huntington's Disease<br>Transgenic Mice. Frontiers in Molecular Neuroscience, 2018, 11, 433. | 1.4 | 10        |
| 177 | Limitations to intergenerational inheritance: subchronic paternal stress preconception does not influence offspring anxiety. Scientific Reports, 2020, 10, 16050.                                                                                                         | 1.6 | 10        |
| 178 | Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends in Genetics, 2022, 38, 662-675.                                                                                                                         | 2.9 | 10        |
| 179 | Epimimetics: Novel Therapeutics Targeting Epigenetic Mediators and Modulators. Trends in Pharmacological Sciences, 2020, 41, 232-235.                                                                                                                                     | 4.0 | 9         |
| 180 | Duration of Environmental Enrichment Determines Astrocyte Number and Cervical Lymph Node T<br>Lymphocyte Proportions but Not the Microglial Number in Middle-Aged C57BL/6 Mice. Frontiers in<br>Cellular Neuroscience, 2020, 14, 57.                                      | 1.8 | 9         |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Assessing attention orienting in mice: a novel touchscreen adaptation of the Posner-style cueing task.<br>Neuropsychopharmacology, 2021, 46, 432-441.                                                                                                | 2.8 | 9         |
| 182 | Therapeutic impacts of environmental enrichment: Neurobiological mechanisms informing molecular targets for enviromimetics. Neuropharmacology, 2019, 145, 1-2.                                                                                       | 2.0 | 8         |
| 183 | Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity, and social behavior. FASEB Journal, 2022, 36, e21981.                                                                        | 0.2 | 8         |
| 184 | Role of muscarinic receptors in the activity of N-desmethylclozapine: reversal of hyperactivity in the phospholipase C knockout mouse. Behavioural Pharmacology, 2008, 19, 543-547.                                                                  | 0.8 | 7         |
| 185 | Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Treatments. Current<br>Pharmaceutical Biotechnology, 2012, 13, 1522-1534.                                                                                                        | 0.9 | 7         |
| 186 | Translating preclinical environmental enrichment studies for the treatment of autism and other brain disorders: Comment on Woo and Leon (2013) Behavioral Neuroscience, 2013, 127, 606-609.                                                          | 0.6 | 7         |
| 187 | Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington's disease and wildtype mice. Behavioural Brain Research, 2014, 274, 118-127.                                                                             | 1.2 | 7         |
| 188 | Loss of the Sexually Dimorphic Neuro-Inflammatory Response in a Transgenic Mouse Model of<br>Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 297-303.                                                                                | 0.9 | 7         |
| 189 | Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene. British Journal of Pharmacology, 2019, 176, 3279-3296.                                          | 2.7 | 7         |
| 190 | Preconceptual paternal environmental stimulation alters behavioural phenotypes and adaptive responses intergenerationally in Swiss mice. Physiology and Behavior, 2020, 223, 112968.                                                                 | 1.0 | 7         |
| 191 | Short-Term Environmental Enrichment is a Stronger Modulator of Brain Glial Cells and Cervical<br>Lymph Node T Cell Subtypes than Exercise or Combined Exercise and Enrichment. Cellular and<br>Molecular Neurobiology, 2021, 41, 469-486.            | 1.7 | 7         |
| 192 | Exercise ameliorates aberrant synaptic plasticity without enhancing adult-born cell survival in the hippocampus of serotonin transporter knockout mice. Brain Structure and Function, 2021, 226, 1991-1999.                                          | 1.2 | 7         |
| 193 | Brain phylogeny, ontogeny and dysfunction: integrating evolutionary, developmental and clinical perspectives in cognitive neuroscience. Acta Neuropsychiatrica, 2007, 19, 149-158.                                                                   | 1.0 | 6         |
| 194 | Environmental Modulations of the Number of Midbrain Dopamine Neurons in Adult Mice. Journal of<br>Visualized Experiments, 2015, , 52329.                                                                                                             | 0.2 | 6         |
| 195 | Longâ€lasting housing environment manipulation and acute loss of environmental enrichment impact<br>BALB/c mice behaviour in multiple functional domains. European Journal of Neuroscience, 2022, 55,<br>1118-1140.                                  | 1.2 | 6         |
| 196 | Sex-dependent effects of chronic exercise on cognitive flexibility but not hippocampal Bdnf in aging mice. Neuronal Signaling, 2022, 6, NS20210053.                                                                                                  | 1.7 | 6         |
| 197 | A Preclinical Model of Computerized Cognitive Training: Touchscreen Cognitive Testing Enhances<br>Cognition and Hippocampal Cellular Plasticity in Wildtype and Alzheimer's Disease Mice. Frontiers in<br>Behavioral Neuroscience, 2021, 15, 766745. | 1.0 | 6         |
| 198 | Environmental Enrichment: A Cure for Cancer? It's All in the Mind. Journal of Molecular Cell Biology, 2010, 2, 302-304.                                                                                                                              | 1.5 | 5         |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Characterizing Social Behavior in Genetically Targeted Mouse Models of Brain Disorders. Methods in<br>Molecular Biology, 2013, 1017, 95-104.                                                                                             | 0.4 | 5         |
| 200 | Hypersensitivity to sertraline in the absence of hippocampal 5-HT1AR and 5-HTT gene expression changes following paternal corticosterone treatment. Environmental Epigenetics, 2018, 4, dvy015.                                          | 0.9 | 5         |
| 201 | Stressing the Seminal Role of Paternal Experience in Transgenerational â€~Epigenopathy' Affecting<br>Offspring Health and Disease Susceptibility. Neuroscience, 2018, 388, 472-473.                                                      | 1.1 | 5         |
| 202 | High-Frequency Neuronal Oscillatory Abnormalities in the Phospholipase C-β1 Knockout Mouse Model of Schizophrenia. International Journal of Neuropsychopharmacology, 2019, 22, 221-231.                                                  | 1.0 | 5         |
| 203 | TRINUCLEOTIDE-REPEAT EXPANSIONS AND NEURODEGENERATIVE DISEASE: A MECHANISM OF PATHOGENESIS. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1015-1020.                                                                  | 0.9 | 4         |
| 204 | Nature, nurture and neurobiology: Gene–environment interactions in neuropsychiatric disorders.<br>Neurobiology of Disease, 2013, 57, 1-4.                                                                                                | 2.1 | 4         |
| 205 | How the enriched get richer? Experience-dependent modulation of microRNAs and the therapeutic effects of environmental enrichment. Pharmacology Biochemistry and Behavior, 2020, 195, 172940.                                            | 1.3 | 4         |
| 206 | Progressive impairments in executive function in the APP/PS1 model of Alzheimer's disease as measured by translatable touchscreen testing. Neurobiology of Aging, 2021, 108, 58-71.                                                      | 1.5 | 4         |
| 207 | Thinking with your stomach? Gut feelings on microbiome modulation of brain structure and function<br>(Commentary on Luczynski <i>etÂal</i> .). European Journal of Neuroscience, 2016, 44, 2652-2653.                                    | 1.2 | 3         |
| 208 | Plastic brains and gastrointestinal strains: The microbiota–gut–brain axis as a modulator of cellular<br>plasticity and cognitive function (commentary on Darch et al., 2021). European Journal of<br>Neuroscience, 2021, 54, 5245-5248. | 1.2 | 3         |
| 209 | Environmental Enrichment and Gene–Environment Interactions in Mouse Models of Brain Disorders.<br>Neuromethods, 2010, , 201-216.                                                                                                         | 0.2 | 3         |
| 210 | Paternal bloodlines sculpting seminal concepts: circulating factors as mediators of transgenerational 'epigenopathy' and 'epigenetic resilience'. EMBO Journal, 2020, 39, e107014.                                                       | 3.5 | 3         |
| 211 | The Impact of Inflammation on Brain Function and Behavior in Rodent Models of Affective Disorders. , 2018, , 85-102.                                                                                                                     |     | 2         |
| 212 | Expanding genes, repeating themes and therapeutic schemes: The neurobiology of tandem repeat<br>disorders. Neurobiology of Disease, 2020, 144, 105053.                                                                                   | 2.1 | 2         |
| 213 | Expression of doublecortin correlates with neuronal migration and pattern formation in diverse regions of the developing chick brain. Journal of Neuroscience Research, 1999, 55, 650-657.                                               | 1.3 | 2         |
| 214 | Loss-of-function and gain-of-function studies refute the hypothesis that tau protein is causally<br>involved in the pathogenesis of Huntington's disease. Human Molecular Genetics, 2022, 31, 1997-2009.                                 | 1.4 | 2         |
| 215 | Trinucleotide-repeat expansions and neurodegenerative diseases. Trends in Neurosciences, 1995, 18, 440.                                                                                                                                  | 4.2 | 1         |
|     |                                                                                                                                                                                                                                          |     |           |

216 Correspondence. Trends in Neurosciences, 1997, 20, 349.

4.2 1

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Towards a therapy for Huntington's disease (Commentary on GiampÃÂ <i>etÂal.</i> ). European Journal of<br>Neuroscience, 2009, 29, 901-901.                                                                                  | 1.2 | 1         |
| 218 | Translatable Models of Brain and Cognitive Reserve. , 2017, , 79-104.                                                                                                                                                       |     | 1         |
| 219 | [P2–071]: ABSENCE OF TASK LEARNING IN THE APP/PS1 MOUSE MODEL OF ALZHEIMER's DISEASE AS<br>MEASURED BY TRANSLATABLE TOUCHSCREEN TECHNOLOGY. Alzheimer's and Dementia, 2017, 13, P632.                                       | 0.4 | 1         |
| 220 | Environmental Stimulation Modulating the Pathophysiology of Neurodevelopmental Disorders. , 2019, , 31-54.                                                                                                                  |     | 1         |
| 221 | Environmental enrichment: neurophysiological responses and consequences for health. , 2018, , 71-78.                                                                                                                        |     | 1         |
| 222 | H04â€The relationship of hypothalamic pituitary adrenal axis dysfunction to mood and cognitive changes in the early stages of Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, A34.3-A35. | 0.9 | 0         |
| 223 | Huntington's disease: the crossroads of neurology and psychiatry. Lancet Neurology, The, 2011, 10, 210.                                                                                                                     | 4.9 | 0         |
| 224 | Harnessing experience-dependent plasticity for CNS repair and regeneration. Future Neurology, 2012, 7, 523-525.                                                                                                             | 0.9 | 0         |
| 225 | Tandem repeat polymorphisms as modulators of biological function and dysfunction. Human<br>Mutation, 2012, 33, v-v.                                                                                                         | 1.1 | Ο         |
| 226 | Stress and Glucocorticoids as Experience-Dependent Modulators of Huntington's Disease. , 2019, , 243-278.                                                                                                                   |     | 0         |
| 227 | TNF signaling via TNF receptors does not mediate the effects of short-term exercise on cognition,<br>anxiety and depressive-like behaviors in middle-aged mice. Behavioural Brain Research, 2021, 408, 113269.              | 1.2 | 0         |
| 228 | Constituents, organization and processes ofÂthe human brain. Advances in Consciousness Research, 2013, , 15-36.                                                                                                             | 0.2 | 0         |
| 229 | Experience-dependent modulation of neurodegenerative disorders. , 2019, , 116-142.                                                                                                                                          |     | 0         |
| 230 | Neurodegenerative diseases. IDrugs: the Investigational Drugs Journal, 2001, 4, 6-8.                                                                                                                                        | 0.7 | 0         |
| 231 | European NeuroscienceSeventh Biennial FENS Forum. IDrugs: the Investigational Drugs Journal, 2010, 13, 607-9.                                                                                                               | 0.7 | 0         |
| 232 | Tandem repeat polymorphisms. Preface. Advances in Experimental Medicine and Biology, 2012, 769, vii-ix.                                                                                                                     | 0.8 | 0         |