Masaki Saigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12125975/publications.pdf

Version: 2024-02-01

		1307594	1474206	
9	182	7	9	
papers	citations	h-index	g-index	
9	9	9	236	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Aggregation-induced emission active thermally-activated delayed fluorescence materials possessing N-heterocycle and sulfonyl groups. Journal of Materials Chemistry C, 2022, 10, 4607-4613.	5.5	3
2	Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy. Bulletin of the Chemical Society of Japan, 2022, 95, 381-388.	3.2	3
3	Heavy metal-free visible-to-UV photon upconversion with over 20% efficiency sensitized by a ketocoumarin derivative. Journal of Materials Chemistry C, 2022, 10, 4558-4562.	5.5	23
4	Eliminating the Reverse ISC Bottleneck of TADF Through Excited State Engineering and Environmentâ€Tuning Toward State Resonance Leading to Monoâ€Exponential Subâ€Âµs Decay. High OLED External Quantum Efficiency Confirms Efficient Exciton Harvesting. Advanced Functional Materials, 2022, 32, .	14.9	19
5	Guest-Tunable Excited States in a Cyanide-Bridged Luminescent Coordination Polymer. Inorganic Chemistry, 2021, 60, 6140-6146.	4.0	12
6	Achieving Thermally Activated Delayed Fluorescence from Benzophenone by Host–Guest Complexation. Journal of Physical Chemistry C, 2021, 125, 17392-17399.	3.1	9
7	Intramolecular-rotation driven triplet-to-singlet upconversion and fluctuation induced fluorescence activation in linearly connected donor–acceptor molecules. Journal of Chemical Physics, 2020, 153, 204702.	3.0	15
8	Suppression of Structural Change upon S ₁ –T ₁ Conversion Assists the Thermally Activated Delayed Fluorescence Process in Carbazole-Benzonitrile Derivatives. Journal of Physical Chemistry Letters, 2019, 10, 2475-2480.	4.6	45
9	Investigation of excited state, reductive quenching, and intramolecular electron transfer of Ru(<scp>ii</scp>)–Re(<scp>i</scp>) supramolecular photocatalysts for CO ₂ reduction using time-resolved IR measurements. Chemical Science, 2018, 9, 2961-2974.	7.4	53