
Jasper H N Yik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1212592/publications.pdf Version: 2024-02-01

IASDED H N YIK

#	Article	IF	CITATIONS
1	CircSLC7A2 protects against osteoarthritis through inhibition of the miRâ€4498/TIMP3 axis. Cell Proliferation, 2021, 54, e13047.	5.3	24
2	A Green Approach to Producing Polymer Microparticles for Local Sustained Release of Flavopiridol. Chemical Research in Chinese Universities, 2021, 37, 1116.	2.6	2
3	Direct Visualization of the Binding of Transforming Growth Factor Beta 1 with Cartilage Oligomeric Matrix Protein via High-Resolution Atomic Force Microscopy. Journal of Physical Chemistry B, 2020, 124, 9497-9504.	2.6	4
4	Label-Free and Direct Visualization of Multivalent Binding of Bone Morphogenetic Protein-2 with Cartilage Oligomeric Matrix Protein. Journal of Physical Chemistry B, 2019, 123, 39-46.	2.6	5
5	Flavopiridol Protects Bone Tissue by Attenuating RANKL Induced Osteoclast Formation. Frontiers in Pharmacology, 2018, 9, 174.	3.5	20
6	In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury. Biochemical and Biophysical Research Communications, 2015, 460, 741-746.	2.1	24
7	Brd4 and HEXIM1: Multiple Roles in P-TEFb Regulation and Cancer. BioMed Research International, 2014, 2014, 1-11.	1.9	61
8	Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: Interaction, regulation and role in chondrogenesis. Matrix Biology, 2014, 37, 102-111.	3.6	127
9	Cyclinâ€Dependent Kinase 9 Inhibition Protects Cartilage From the Catabolic Effects of Proinflammatory Cytokines. Arthritis and Rheumatology, 2014, 66, 1537-1546.	5.6	35
10	c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells. Cartilage, 2013, 4, 177-186.	2.7	3
11	Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone, 2013, 55, 23-35.	2.9	48
12	The Oncogene LRF Stimulates Proliferation of Mesenchymal Stem Cells and Inhibits Their Chondrogenic Differentiation. Cartilage, 2013, 4, 329-338.	2.7	4
13	The oncogene LRF is a survival factor in chondrosarcoma and contributes to tumor malignancy and drug resistance. Carcinogenesis, 2012, 33, 2076-2083.	2.8	21
14	Identification of a 3Kbp Mechanoresponsive Promoter Region in the Human Cartilage Oligomeric Matrix Protein Gene. Tissue Engineering - Part A, 2012, 18, 1882-1889.	3.1	13
15	Enhanced Activity of Transforming Growth Factor β1 (TGF-β1) Bound to Cartilage Oligomeric Matrix Protein. Journal of Biological Chemistry, 2011, 286, 43250-43258.	3.4	63
16	Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Research, 2007, 35, 2003-2012.	14.5	162
17	The Yin and Yang of P-TEFb Regulation: Implications for Human Immunodeficiency Virus Gene Expression and Global Control of Cell Growth and Differentiation. Microbiology and Molecular Biology Reviews, 2006, 70, 646-659.	6.6	232
18	Compensatory Contributions of HEXIM1 and HEXIM2 in Maintaining the Balance of Active and Inactive Positive Transcription Elongation Factor b Complexes for Control of Transcription. Journal of Biological Chemistry, 2005, 280, 16368-16376.	3.4	92

JASPER H N YIK

#	Article	IF	CITATIONS
19	Recruitment of P-TEFb for Stimulation of Transcriptional Elongation by the Bromodomain Protein Brd4. Molecular Cell, 2005, 19, 535-545.	9.7	955
20	A Human Immunodeficiency Virus Type 1 Tat-Like Arginine-Rich RNA-Binding Domain Is Essential for HEXIM1 To Inhibit RNA Polymerase II Transcription through 7SK snRNA-Mediated Inactivation of P-TEFb. Molecular and Cellular Biology, 2004, 24, 5094-5105.	2.3	113
21	Inhibition of P-TEFb (CDK9/Cyclin T) Kinase and RNA Polymerase II Transcription by the Coordinated Actions of HEXIM1 and 7SK snRNA. Molecular Cell, 2003, 12, 971-982.	9.7	433
22	H2, the Minor Subunit of the Human Asialoglycoprotein Receptor, Trafficks Intracellularly and Forms Homo-oligomers, but Does Not Bind Asialo-orosomucoid. Journal of Biological Chemistry, 2002, 277, 35297-35304.	3.4	10
23	The Position of Cysteine Relative to the Transmembrane Domain Is Critical for Palmitoylation of H1, the Major Subunit of the Human Asialoglycoprotein Receptor. Journal of Biological Chemistry, 2002, 277, 47305-47312.	3.4	13
24	Nonpalmitoylated Human Asialoglycoprotein Receptors Recycle Constitutively but Are Defective in Coated Pit-mediated Endocytosis, Dissociation, and Delivery of Ligand to Lysosomes. Journal of Biological Chemistry, 2002, 277, 40844-40852.	3.4	18
25	The Minor Subunit Splice Variants, H2b and H2c, of the Human Asialoglycoprotein Receptor Are Present with the Major Subunit H1 in Different Hetero-oligomeric Receptor Complexes. Journal of Biological Chemistry, 2002, 277, 23076-23083.	3.4	26
26	Palmitoylation-defective asialoglycoprotein receptors are normal in their cellular distribution and ability to bind ligand, but are defective in ligand uptake and degradation. Biochemical and Biophysical Research Communications, 2002, 297, 980-986.	2.1	6
27	Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochimica Et Biophysica Acta - General Subjects, 2002, 1572, 341-363.	2.4	203