Marisa Masumi Beppu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12123299/publications.pdf

Version: 2024-02-01

535685 536525 33 2,352 17 29 citations g-index h-index papers 34 34 34 4054 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Silk fibroin membranes with selfâ€assembled globular structures for controlled drug release. Journal of Applied Polymer Science, 2020, 137, 48763.	1.3	8
2	Phase Diagram and Estimation of Flory-Huggins Parameter of Interaction of Silk Fibroin/Sodium Alginate Blends. Frontiers in Bioengineering and Biotechnology, 2020, 8, 973.	2.0	13
3	Fundamentals and biomedical applications of biopolymer-based layer-by-layer films., 2020,, 219-242.		3
4	Glucomannan asymmetric membranes for wound dressing. Journal of Materials Research, 2019, 34, 481-489.	1.2	20
5	Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydrate Polymers, 2019, 212, 59-66.	5.1	64
6	Study of phase separation in blends of silk fibroin and sodium alginate in solution and in solid state. Journal of Polymer Research, 2018, 25, 1.	1.2	6
7	Production and characterization of fibroin hydrogel using waste silk fibers. Fibers and Polymers, 2017, 18, 57-63.	1.1	19
8	In vitro evaluation of anti-calcification and anti-coagulation on sulfonated chitosan and carrageenan surfaces. Materials Science and Engineering C, 2016, 59, 241-248.	3.8	27
9	Surface modification of polyelectrolyte multilayers by high radio frequency air plasma treatment. Applied Surface Science, 2015, 329, 287-291.	3.1	11
10	Formation of silk fibroin hydrogel and evaluation of its drug release profile. Journal of Applied Polymer Science, 2015, 132, .	1.3	28
11	Factors Controlling the Deposition of Silk Fibroin Nanofibrils during Layer-by-Layer Assembly. Biomacromolecules, 2015, 16, 97-104.	2.6	19
12	Synthesis and application of natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Materials Research, 2014, 17, 386-391.	0.6	32
13	Silk fibroin and sodium alginate blend: Miscibility and physical characteristics. Materials Science and Engineering C, 2014, 40, 85-91.	3.8	37
14	Introduction of copper nanoparticles in chitosan matrix as strategy to enhance chromate adsorption. Chemical Engineering and Processing: Process Intensification, 2014, 83, 43-48.	1.8	13
15	Epoxidation of modified natural plasticizer obtained from rice fatty acids and application on polyvinylchloride films. Journal of Applied Polymer Science, 2013, 127, 3543-3549.	1.3	42
16	An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chemical Engineering Journal, 2013, 234, 423-429.	6.6	108
17	Biocomposite membranes of sodium alginate and silk fibroin fibers for biomedical applications. Journal of Applied Polymer Science, 2013, 130, 3451-3457.	1.3	46
18	Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 2011, 47, 254-263.	2.6	1,425

#	Article	IF	CITATIONS
19	Hydrogels from silk fibroin metastable solution: Formation and characterization from a biomaterial perspective. Materials Science and Engineering C, 2011, 31, 997-1001.	3.8	42
20	Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polymer Testing, 2011, 30, 478-484.	2.3	177
21	Silk Fibroin: A Promising Biomaterial. Advanced Materials Research, 2011, 409, 99-104.	0.3	3
22	Dynamic adsorption of chromium ions onto natural and crosslinked chitosan membranes for wastewater treatment. Materials Research, 2010, 13, 89-94.	0.6	10
23	Preparation and Characterization of Insoluble Silk Fibroin/Chitosan Blend Films. Polymers, 2010, 2, 719-727.	2.0	83
24	Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitationâ€"Part 1: Alginate. Materials Science and Engineering C, 2009, 29, 1109-1113.	3.8	9
25	Effect of freezing methods on the properties of lyophilized porous silk fibroin membranes. Materials Research, 2009, 12, 233-237.	0.6	28
26	In Vitro Calcification of Silk Fibroin Hydrogel. Key Engineering Materials, 2008, 361-363, 503-506.	0.4	5
27	Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitation-part 2: Chitosan. Materials Science and Engineering C, 2008, 28, 1565-1571.	3.8	8
28	Precipitation of calcium phosphate and calcium carbonate induced over chitosan membranes: A quick method to evaluate the influence of polymeric matrices in heterogeneous calcification. Colloids and Surfaces B: Biointerfaces, 2006, 53, 15-22.	2.5	24
29	PAA influence on chitosan membrane calcification. Materials Science and Engineering C, 2003, 23, 651-658.	3.8	20
30	Influence of Acetylation on In Vitro Chitosan Membrane Biomineralization. Key Engineering Materials, 2003, 254-256, 311-314.	0.4	11
31	Improvement of Collagen Hydrogel Scaffolds Properties by the Addition of Konjac Glucomannan. Advanced Materials Research, 0, 409, 187-192.	0.3	10
32	Membranes of Chitosan and Collagen-Type 1 for Biomineralization/Ostheogenesis. Key Engineering Materials, 0, 587, 222-226.	0.4	0
33	<i>In Situ</i> X-Ray Diffraction Study of Phase Development during Hardening of Î ² -Tricalcium Phosphate Bone Cements with Chitosan. Key Engineering Materials, 0, 587, 109-114.	0.4	1