Dongrong Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12122814/publications.pdf

Version: 2024-02-01

236925 276875 1,738 52 25 41 citations h-index g-index papers 52 52 52 1092 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-Assembly of a Series of Extended Architectures Based on Polyoxometalate Clusters and Silver Coordination Complexes. Inorganic Chemistry, 2005, 44, 6062-6070.	4.0	189
2	A Novel Pillar-Layered Organicâ^'Inorganic Hybrid Based on Lanthanide Polymer and Polyomolybdate Clusters:  New Opportunity toward the Design and Synthesis of Porous Framework. Crystal Growth and Design, 2005, 5, 65-67.	3.0	146
3	Self-Assembly of Extended High-Dimensional Architectures from Anderson-type Polyoxometalate Clusters. Crystal Growth and Design, 2006, 6, 1107-1112.	3.0	130
4	A Series of New Organicâ^'Inorganic Molybdenum Arsenate Complexes Based on [(ZnO6)(As3O3)2Mo6O18]4-and [HxAs2Mo6O26](6-x)-Clusters as SBUs. Inorganic Chemistry, 2007, 46, 1563-1574.	4.0	87
5	A series of new polyoxoanion-based inorganic-organic hybrids: (C6NO2H5)[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)] \hat{A} ·4H2O (Ln = Ce, Pr, La and Nd) with a chiral layer structure. New Journal of Chemistry, 2005, 29, 667.	2.8	75
6	Hydrothermal synthesis and characterization of an unprecedented Î-type octamolybdate: [{Ni(phen)2}2(Mo8O26)]. Inorganica Chimica Acta, 2004, 357, 2525-2531.	2.4	73
7	Open-Framework Polar Compounds: Synthesis and Characterization of Rare-Earth Polyoxometalates (C6NO2H5)2 [Ln(H2O)5(CrMo6H6O24)] \hat{A} -0.5H2O (Ln = Ce and La). European Journal of Inorganic Chemistry, 2005, 2005, 854-859.	2.0	68
8	A series of novel entangled coordination frameworks with inherent features of self-threading, polyrotaxane and polycatenane. CrystEngComm, 2011, 13, 4988.	2.6	56
9	Two Novel Vanadium Tellurites Covalently Bonded with Metalâ^'Organic Complex Moieties:Â M(phen)V2TeO8(M = Cu, Ni). Inorganic Chemistry, 2003, 42, 7652-7657.	4.0	52
10	An Unprecedented Fivefold Interpenetrating Network Based on Polyoxometalate Building Blocks. Crystal Growth and Design, 2007, 7, 592-594.	3.0	52
11	Synthesis and Structure of an Unprecedented Layered Vanadate Complex Containing Double-Helical Chains: [{ColII(phen)2}2V8O23]. European Journal of Inorganic Chemistry, 2004, 2004, 1385-1388.	2.0	45
12	Helicity controlled by the chirality of amino acid: two novel enantiopure chiral 3D architectures containing fivefold interwoven helices. CrystEngComm, 2012, 14, 3609.	2.6	45
13	A novel chain-like polymer constructed from heteropolyanions covalently linked by lanthanide cations: (C 5 H 9 NO 2) 2 [La(H 2 O) 7 CrMo 6 H 6 O 24] \hat{A} · 11H 2 O (Proline=C 5 H 9 NO 2). Inorganic Chemistry Communication, 2004, 7, 356-358.	3.9	40
14	An unprecedented (5,12)-connected 3D self-penetrating metal–organic framework based on dinuclear barium clusters as building blocks. CrystEngComm, 2011, 13, 433-436.	2.6	39
15	Syntheses and structures of two novel inorganic–organic hybrid octamolybdates: [H2enMe]2[Mo8O26]·2H2O and [Ni(2,2′-bpy)3]2[Î-Mo8O26]. Journal of Molecular Structure, 2005, 738, 217-225.	3.6	37
16	Two (3,10)-Connected 2D Networks Based on Pentanuclear Metal Clusters as Building Blocks. European Journal of Inorganic Chemistry, 2008, 2008, 2610-2615.	2.0	37
17	Unusual self-threading and interdigitated architectures self-assembled from long flexible ligands and d10 metal salts. CrystEngComm, 2011, 13, 7098.	2.6	35
18	An unprecedented 3-fold interpenetrated double-edged pseudo-diamondoid network containing exceptional 5-fold interlocking tri-flexure helices and 15-fold interwoven helices. CrystEngComm, 2011, 13, 4841.	2.6	34

#	Article	IF	CITATIONS
19	Organic–inorganic hybrids with three-dimensional supramolecular channels based on Anderson type polyoxoanions. Journal of Molecular Structure, 2005, 743, 117-123.	3.6	33
20	Guest-induced expanding and shrinking porous modulation based on interdigitated metal–organic frameworks constructed by 4,4′-sulfonyldibenzoate and barium ions. CrystEngComm, 2012, 14, 2849.	2.6	33
21	The first example of a structure containing both \hat{l}_{\pm} - and \hat{l}^2 -octamolybdates: synthesis and structure of a new three-dimensional supramolecular network [Co(2,2â \in 2-bipy)3]4[Mo8O26]2·5H2O (2,2â \in 2-bipy=2,2â \in 2-bipyridine). Journal of Molecular Structure, 2005, 741, 149-153.	3.6	28
22	Hydrothermal synthesis and crystal structure of a three-dimensional vanadium tellurite V4Te4O18. Journal of Solid State Chemistry, 2003, 176, 159-164.	2.9	27
23	Self-assembly of a novel 3D open framework from Anderson-type polyoxoanions. Inorganic Chemistry Communication, 2005, 8, 267-270.	3.9	27
24	Self-assembly of four three-dimensional reduced molybdenum(V) phosphates decorated with transitional metal complexes. Inorganica Chimica Acta, 2007, 360, 421-430.	2.4	27
25	Novel hydrogen-bonded three-dimensional network complexes containing cobalt-pyridine-2,6-dicarboxylic acid. Transition Metal Chemistry, 2004, 29, 212-215.	1.4	25
26	Synthesis and characterization of two new extended structures based on Anderson-type polyoxoanions. Journal of Molecular Structure, 2005, 751, 184-189.	3.6	23
27	Hydrothermal synthesis and crystal structure of a novel one-dimensional arsenic vanadate decorated with organonitrogen ligand: [H3V3O26(AsO4)4(phen)8(H2O)2]·2H2O (phen=phenanthroline). Inorganica Chimica Acta, 2004, 357, 2477-2482.	2.4	21
28	Synthesis and characterization of two novel high-dimensional extended structures based on Keggin-type polyoxometalates and potassium–glycine complex subunits. Journal of Molecular Structure, 2007, 837, 237-244.	3.6	17
29	Syntheses and characterization of three hybrid materials based on polymeric copper complexes and saturated Keggin polyoxoanions. Transition Metal Chemistry, 2007, 32, 950-959. An interesting fourfold interpenetrating network constructed by polyoxometalates and	1.4	17
30	metal–organic coordination complexes: <mml:math altimg="si3.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mmultiscripts><mml:mrow><mml:mtext>Cu</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>Cu</mml:mtext></mml:mrow><mml:mrow><mml:mtext>Cu</mml:mtext></mml:mrow><mml:mrow><mml:mtext>Cu</mml:mtext></mml:mrow><mml:mtext></mml:mtext><!--</td--><td>3.6 nl:none</td><td>17</td></mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math>	3.6 nl:none	17
31	A layered vanadium arsenate network decorated with the directly coordinated organonitrogen <mml:mrow><mml:mn>5</mml:mn></mml:mrow> <mml:mrow><mml:mn>5</mml:mn></mml:mrow> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>nl:none 2.9</td><td>16</td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	nl:none 2.9	16
32	Hydrothermal synthesis and crystal structure of a novel polyoxomolybdate with the hydroxylated N-heterocycle ligand: Mo2O5(ophen)2 (Hophen=2-hydroxy-1,10-phenanthroline). Journal of Molecular Structure, 2003, 659, 13-21.	3.6	16
33	Hydrothermal synthesis and crystal structure of a novel layered vanadate complex containing double helical chains: [{Zn(2,2′-bpy)}2V8O21](2,2′-bpy=2,2′-bipyridine). Journal of Molecular Structure, 2004, 6 123-131.	91.,6	16
34	An unusual 3D 8-connected entangled coordination network with coexistence of self-threading, polythreading and interpenetration. CrystEngComm, 2013, 15, 10435.	2.6	16
35	A novel self-penetrating metal–organic open framework containing unusual triple-stranded molecular braid and septuple helices. Journal of Molecular Structure, 2009, 936, 264-269.	3.6	15
36	A series of polythreaded architectures based on a long flexible tetracarboxylate ligand and different N-donor ligands. Inorganica Chimica Acta, 2016, 447, 66-76.	2.4	13

#	Article	IF	Citations
37	The helical structure induced by metal–organic complexes: synthesis and characterization of a novel layered vanadate complex containing double helical chains. Journal of Molecular Structure, 2004, 707, 77-81.	3.6	12
38	Hydrothermal synthesis and crystal structure of a three-dimensional metal selenite containing double helical chains: Fe3(H2O)(SeO3)3. Journal of Solid State Chemistry, 2004, 177, 2699-2704.	2.9	11
39	Synthesis and Characterization of a Novel Organic/Inorganic Hybrid Based on Octamolybdates and Benzimidazole Molecules [Hbenzimi]4 [(benzimi)2Mo8O26] · 2H2O (benzimi = benzimidazole). Transition Metal Chemistry, 2005, 30, 873-878.	1.4	11
40	Synthesis and characterization of a novel two-dimensional layered vanadate complex containing double helical chains. Journal of Molecular Structure, 2007, 840, 53-58.	3.6	10
41	A 3D interpenetrated rutile coordination framework formed by dinuclear cadmium clusters and 4,4â \in 2-sulfonyldibenzoate. Solid State Sciences, 2011, 13, 1573-1578.	3.2	10
42	Hydrothermal synthesis and crystal structure of a new layered titanium vanadate decorated with organonitrogen ligand: [Ti(2,2′-bpy)V2O7]. Journal of Molecular Structure, 2004, 692, 107-114.	3.6	9
43	The chiral structure induced by lone-pair electrons: syntheses and characterization of two novel chiral rare-earth selenites containing homochiral helical chains. Journal of Molecular Structure, 2005, 733, 69-75.	3.6	9
44	Synthesis and structure of a novel three-dimensional metal selenite containing multidirectional intersecting double helical chains: [Fe2(H2O)4(SeO3)2]. Journal of Molecular Structure, 2005, 740, 249-253.	3.6	7
45	Structural effects of lone-pair electrons: a novel three-dimensional, open-framework metal selenite constructed from {CoSeO3}n double helical chains linked via ethylenediamine pillars. Journal of Coordination Chemistry, 2006, 59, 395-402.	2.2	7
46	Synthesis and Characterization of a Novel 3D Organic–Inorganic Hybrid Framwork Templated by Keggin Anions. Journal of Cluster Science, 2007, 18, 909-920.	3.3	6
47	Synthesis and Characterization of Two Extended High-dimensional Architectures Formed by Transition Metal–Glycine Complexes. Journal of Cluster Science, 2008, 19, 367-378.	3.3	5
48	Hydrothermal synthesis and characterization of a novel polyoxometallate-templated three-dimensional supramolecular network. Journal of Coordination Chemistry, 2004, 57, 615-626.	2.2	4
49	Synthesis and structure of a novel one-dimensional vanadate constructed from tetravanadate clusters linked via copper–organic complex moieties: [{Cu(phen)(H2O)}2V4O12]. Journal of Coordination Chemistry, 2006, 59, 827-835.	2.2	4
50	Synthesis, Structure, and Characterization of a New Metalâ€Organic Framework containing <i>Meso</i> å€Helices. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 558-562.	1.2	4
51	A three-dimensional supramolecular framework built from two-dimensional wave-shaped layers. Journal of Coordination Chemistry, 2006, 59, 883-890.	2.2	2
52	Open-Framework Polar Compounds: Synthesis and Characterization of Rare-Earth Polyoxometalates (C6NO2H5)2[Ln(H2O)5(CrMo6H6O24)]×0.5H2O (Ln: Ce and La) ChemInform, 2005, 36, no-no.	0.0	O