Pablo Albella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1212138/publications.pdf

Version: 2024-02-01

65 papers

4,243 citations

32 h-index 60 g-index

68 all docs

68
docs citations

68 times ranked 4969 citing authors

#	Article	IF	CITATIONS
1	Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nature Communications, 2012, 3, 1171.	5.8	466
2	Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Communications, 2015, 6, 7915.	5.8	433
3	Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. Journal of Physical Chemistry C, 2013, 117, 13573-13584.	1.5	347
4	All-Optical Control of a Single Plasmonic Nanoantenna–ITO Hybrid. Nano Letters, 2011, 11, 2457-2463.	4.5	259
5	Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nature Communications, 2012, 3, 684.	5.8	207
6	Efficient Third Harmonic Generation from Metal–Dielectric Hybrid Nanoantennas. Nano Letters, 2017, 17, 2647-2651.	4.5	201
7	Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies. ACS Photonics, 2014, 1, 524-529.	3.2	181
8	Terahertz All-Dielectric Magnetic Mirror Metasurfaces. ACS Photonics, 2016, 3, 1010-1018.	3.2	177
9	Plasmonic Nickel Nanoantennas. Small, 2011, 7, 2341-2347.	5.2	175
10	Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas. Physical Review Letters, 2013, 110, 203902.	2.9	144
11	Real-Space Mapping of Fano Interference in Plasmonic Metamolecules. Nano Letters, 2011, 11, 3922-3926.	4.5	129
12	Shape Matters: Plasmonic Nanoparticle Shape Enhances Interaction with Dielectric Substrate. Nano Letters, 2011, 11, 3531-3537.	4.5	122
13	Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. Optics Express, 2011, 19, 15047.	1.7	94
14	Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers. Scientific Reports, 2016, 5, 18322.	1.6	91
15	Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas. Nanoscale, 2016, 8, 14184-14192.	2.8	82
16	Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. Nano Letters, 2017, 17, 5747-5755.	4.5	81
17	Experimental Demonstration of Tunable Directional Scattering of Visible Light from All-Dielectric Asymmetric Dimers. ACS Photonics, 2017, 4, 489-494.	3.2	78
18	Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms. ACS Omega, 2017, 2, 7682-7685.	1.6	63

#	Article	IF	Citations
19	Analysis of the Spectral Behavior of Localized Plasmon Resonances in the Near- and Far-Field Regimes. Langmuir, 2013, 29, 6715-6721.	1.6	62
20	Recent advances in high refractive index dielectric nanoantennas: Basics and applications. AIP Advances, 2019, 9, .	0.6	57
21	Plasmon-Enhanced Fluorescence and Spectral Modification in SHINEF. Journal of Physical Chemistry C, 2011, 115, 20419-20424.	1.5	52
22	Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Optics Express, 2013, 21, 1270.	1.7	52
23	Precise Attoliter Temperature Control of Nanopore Sensors Using a Nanoplasmonic Bullseye. Nano Letters, 2015, 15, 553-559.	4.5	49
24	Interference, Coupling, and Nonlinear Control of High-Order Modes in Single Asymmetric Nanoantennas. ACS Nano, 2012, 6, 6462-6470.	7.3	46
25	Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. Optics Express, 2012, 20, 5052.	1.7	41
26	Plasmonic linear nanomotor using lateral optical forces. Science Advances, 2020, 6, .	4.7	41
27	Tailored Hypersound Generation in Single Plasmonic Nanoantennas. Nano Letters, 2016, 16, 1428-1434.	4.5	40
28	Plasmon Enhanced Fluorescence with Aggregated Shell-Isolated Nanoparticles. Analytical Chemistry, 2014, 86, 10246-10251.	3.2	38
29	On-Demand Surface- and Tip-Enhanced Raman Spectroscopy Using Dielectrophoretic Trapping and Nanopore Sensing. ACS Photonics, 2016, 3, 1036-1044.	3.2	38
30	Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities. ACS Nano, 2015, 9, 2648-2658.	7.3	36
31	Polarization control of high transmission/reflection switching by all-dielectric metasurfaces. Applied Physics Letters, $2018,112,.$	1.5	34
32	Low-Noise Plasmonic Nanopore Biosensors for Single Molecule Detection at Elevated Temperatures. ACS Photonics, 2017, 4, 2835-2842.	3.2	32
33	Hybrid magnetite–gold nanoparticles as bifunctional magnetic–plasmonic systems: three representative cases. Nanoscale Horizons, 2017, 2, 205-216.	4.1	28
34	Increasing the Enhancement Factor in Plasmon-Enhanced Fluorescence with Shell-Isolated Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 20530-20535.	1.5	26
35	Giant enhancement of the transverse magneto-optical Kerr effect through the coupling of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>É></mml:mi></mml:math> -near-zero and surface plasmon polariton modes. Physical Review B, 2017, 96, .	1.1	26
36	All-Dielectric Chiral Metasurfaces Based on Crossed-Bowtie Nanoantennas. ACS Omega, 2019, 4, 21041-21047.	1.6	24

#	Article	lF	CITATIONS
37	Enhanced chiroptical activity with slotted high refractive index dielectric nanodisks. Physical Review B, 2020, 101, .	1.1	23
38	Surface inspection by monitoring spectral shifts of localized plasmon resonances. Optics Express, 2008, 16, 12872.	1.7	20
39	Extended discrete dipole approximation and its application to bianisotropic media. Optics Express, 2010, 18, 23865.	1.7	20
40	On the performance of a tunable grating-based high sensitivity unidirectional plasmonic sensor. Optics Express, 2021, 29, 13733.	1.7	14
41	Spectral behavior of the linear polarization degree at right-angle scattering configuration for nanoparticle systems. New Journal of Physics, 2010, 12, 103031.	1.2	12
42	Plasmonics and singleâ€molecule detection in evaporated silverâ€island films. Annalen Der Physik, 2012, 524, 697-704.	0.9	12
43	Gold nanodoughnut as an outstanding nanoheater for photothermal applications. Optics Express, 2022, 30, 125.	1.7	10
44	Backscattering of metallic microstructures with small defects located on flat substrates. Optics Express, 2007, 15, 6857.	1.7	7
45	Application of the polar decomposition to light scattering particle systems. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 1369-1374.	1.1	7
46	The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications. Applied Sciences (Switzerland), 2018, 8, 2065.	1.3	7
47	Field emission and electron deposition profiles as a function of carbon nanotube tip geometries. Journal of Applied Physics, 2007, 101, 114313.	1.1	6
48	Polarization of acetonitrile under thermal fields via non-equilibrium molecular dynamics simulations. Journal of Chemical Physics, 2020, 153, 204503.	1.2	6
49	Spatial Control of Heat Flow at the Nanoscale Using Janus Particles. ACS Nano, 2022, 16, 694-709.	7.3	6
50	Monitoring small defects on surface microstructures through backscattering measurements. Optics Letters, 2006, 31, 1744.	1.7	5
51	2D double interaction method for modeling small particles contaminating microstructures located on substrates. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106, 4-10.	1.1	5
52	Nanoscopic surface inspection by analyzing the linear polarization degree of the scattered light. Optics Letters, 2009, 34, 1906.	1.7	5
53	Broadband Unidirectional Forward Scattering with High Refractive Index Nanostructures: Application in Solar Cells. Molecules, 2021, 26, 4421.	1.7	4
54	CDDA: extension and analysis of the discrete dipole approximation for chiral systems. Optics Express, 2021, 29, 30020.	1.7	4

#	Article	IF	CITATIONS
55	Enhanced optical chirality with directional emission of Surface Plasmon Polaritons for chiral sensing applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 284, 108166.	1.1	4
56	Enhanced backscattering of electromagnetic waves from randomly rough gratings on negative magnetic metamaterials. Metamaterials, 2010, 4, 201-206.	2.2	3
57	Surface monitoring based on light scattering by metal nanosensors. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 2046-2058.	1.1	3
58	Influence of the substrate optical properties on the backscattering of contaminated microstructures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 1339-1346.	1.1	2
59	Detection and Characterization of Nano-Defects Located on Micro-Structured Substrates by Means of Light Scattering. , 0, , .		2
60	Enhanced Thermo-optical Response by Means of Anapole Excitation. Journal of Physical Chemistry Letters, 2022, 13, 6230-6235.	2.1	2
61	Nanoscopic inspection of surfaces based on Plasmonic Resonances. , 2009, , .		O
62	Polar decomposition of Mueller matrices for 2D-structured surfaces. EPJ Web of Conferences, 2010, 5, 04006.	0.1	0
63	Efficient directional control of scattered field at optical frequency with subwavelength asymmetric dielectric dimers. , 2016, , .		O
64	Hybrid Plasmonic Nanodevices for All-optical Control of Information. , 2012, , .		0
65	Why Does The Spectrum Of Localized Surface Plasmons Shifts From Near-Field To Far-Field, And Viceversa?., 2014,,.		O