Elizabeth L Berkow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12120272/publications.pdf

Version: 2024-02-01

44 papers 5,448 citations

30 h-index 233125 45 g-index

47 all docs

47 docs citations

times ranked

47

4139 citing authors

#	Article	IF	CITATIONS
1	Simultaneous Emergence of Multidrug-Resistant <i>Candida auris</i> on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clinical Infectious Diseases, 2017, 64, 134-140.	2.9	1,099
2	Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Frontiers in Microbiology, 2016, 7, 2173.	1.5	531
3	Changes in the epidemiological landscape of invasive candidiasis. Journal of Antimicrobial Chemotherapy, 2018, 73, i4-i13.	1.3	349
4	Fluconazole resistance in Candida species: a current perspective. Infection and Drug Resistance, 2017, Volume 10, 237-245.	1.1	346
5	Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nature Communications, 2018, 9, 5346.	5.8	298
6	<i>Candida auris</i> : The recent emergence of a multidrug-resistant fungal pathogen. Medical Mycology, 2019, 57, 1-12.	0.3	280
7	Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses. MBio, 2020, $11,\ldots$	1.8	224
8	Gain-of-Function Mutations in <i>UPC2</i> Are a Frequent Cause of <i>ERG11</i> Upregulation in Azole-Resistant Clinical Isolates of Candida albicans. Eukaryotic Cell, 2012, 11, 1289-1299.	3.4	207
9	Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infectious Diseases, The, 2018, 18, 1377-1384.	4.6	204
10	Investigation of the First Seven Reported Cases of <i>Candida auris,</i> a Globally Emerging Invasive, Multidrug-Resistant Fungus — United States, May 2013–August 2016. Morbidity and Mortality Weekly Report, 2016, 65, 1234-1237.	9.0	201
11	Antifungal Susceptibility Testing: Current Approaches. Clinical Microbiology Reviews, 2020, 33, .	5.7	138
12	Molecular Epidemiology of Candida auris in Colombia Reveals a Highly Related, Countrywide Colonization With Regional Patterns in Amphotericin B Resistance. Clinical Infectious Diseases, 2019, 68, 15-21.	2.9	132
13	Notes from the Field: Ongoing Transmission of <i>Candida auris</i> in Health Care Facilities — United States, June 2016–May 2017. Morbidity and Mortality Weekly Report, 2017, 66, 514-515.	9.0	124
14	Population-Based Active Surveillance for Culture-Confirmed Candidemia â€" Four Sites, United States, 2012â€"2016. MMWR Surveillance Summaries, 2019, 68, 1-15.	18.6	111
15	Mutations in <i>TAC1B</i> : a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. MBio, 2020, 11, .	1.8	101
16	Candida auris for the Clinical Microbiology Laboratory: Not Your Grandfather's Candida Species. Clinical Microbiology Newsletter, 2017, 39, 99-103.	0.4	86
17	Activity of CD101, a long-acting echinocandin, against clinical isolates of Candida auris. Diagnostic Microbiology and Infectious Disease, 2018, 90, 196-197.	0.8	82
18	<i>In Vitro</i> Activity of a Novel Glucan Synthase Inhibitor, SCY-078, against Clinical Isolates of Candida auris. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	80

#	Article	IF	CITATIONS
19	Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 5942-5950.	1.4	7 5
20	Isolation of <i>Candida auris</i> from 9 patients in Central America: Importance of accurate diagnosis and susceptibility testing. Mycoses, 2018, 61, 44-47.	1.8	74
21	Pharmacodynamic Optimization for Treatment of Invasive Candida auris Infection. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	65
22	<i>UPC2</i> Is Universally Essential for Azole Antifungal Resistance in Candida albicans. Eukaryotic Cell, 2014, 13, 933-946.	3.4	58
23	The Fungal Cyp51-Specific Inhibitor VT-1598 Demonstrates <i>In Vitro</i> and <i>In Vivo</i> Activity against Candida auris. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	53
24	Activity of novel antifungal compound APX001A against a large collection of Candida auris. Journal of Antimicrobial Chemotherapy, 2018, 73, 3060-3062.	1.3	47
25	Identification of Candida auris by Use of the Updated Vitek 2 Yeast Identification System, Version 8.01: a Multilaboratory Evaluation Study. Journal of Clinical Microbiology, 2019, 57, .	1.8	47
26	Isolation of azole-resistant Aspergillus fumigatus from the environment in the south-eastern USA. Journal of Antimicrobial Chemotherapy, 2017, 72, 2443-2446.	1.3	46
27	Disruption of the Transcriptional Regulator Cas5 Results in Enhanced Killing of Candida albicans by Fluconazole. Antimicrobial Agents and Chemotherapy, 2014, 58, 6807-6818.	1.4	45
28	Detection of TR $<$ sub $>$ 34 $<$ /sub $>$ /L98H $<$ i $>CYP51A<$ /i $>$ Mutation through Passive Surveillance for Azole-Resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	40
29	Ibrexafungerp: A Novel Oral Triterpenoid Antifungal in Development for the Treatment of Candida auris Infections. Antibiotics, 2020, 9, 539.	1.5	38
30	Multidrug-Resistant <i>Aspergillus fumigatus</i> Carrying Mutations Linked to Environmental Fungicide Exposure — Three States, 2010–2017. Morbidity and Mortality Weekly Report, 2018, 67, 1064-1067.	9.0	38
31	Ceragenins are active against drug-resistant Candida auris clinical isolates in planktonic and biofilm forms. Journal of Antimicrobial Chemotherapy, 2018, 73, 1537-1545.	1.3	24
32	Understanding the Emergence of Multidrug-Resistant Candida: Using Whole-Genome Sequencing to Describe the Population Structure of Candida haemulonii Species Complex. Frontiers in Genetics, 2020, 11, 554.	1.1	24
33	Emerging Multidrug-Resistant Candida duobushaemulonii Infections in Panama Hospitals: Importance of Laboratory Surveillance and Accurate Identification. Journal of Clinical Microbiology, 2018, 56, .	1.8	22
34	Evaluation of nine surface disinfectants against <i>Candida auris</i> using a quantitative disk carrier method: EPA SOP-MB-35. Infection Control and Hospital Epidemiology, 2020, 41, 1219-1221.	1.0	22
35	In Vitro Activity of Novel Antifungal Olorofim against Filamentous Fungi and Comparison to Eight Other Antifungal Agents. Journal of Fungi (Basel, Switzerland), 2021, 7, 378.	1.5	19
36	Bloodstream Infections With <i>Candida auris</i> Among Children in Colombia: Clinical Characteristics and Outcomes of 34 Cases. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 151-154.	0.6	18

#	Article	IF	CITATION
37	Antifungal activity of nikkomycin Z against <i>Candida auris</i> . Journal of Antimicrobial Chemotherapy, 2021, 76, 1495-1497.	1.3	17
38	Genomic Diversity of Azole-Resistant Aspergillus fumigatus in the United States. MBio, 2021, 12, e0180321.	1.8	17
39	Rapid Assessment and Containment of <i>Candida auris</i> Transmission in Postacute Care Settingsâ€"Orange County, California, 2019. Annals of Internal Medicine, 2021, 174, 1554-1562.	2.0	17
40	Candida parapsilosis Mdr1B and Cdr1B Are Drivers of Mrr1-Mediated Clinical Fluconazole Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	9
41	Performance Evaluation of Culture-Independent SYBR Green Candida auris Quantitative PCR Diagnostics on Anterior Nares Surveillance Swabs. Journal of Clinical Microbiology, 2020, 58, .	1.8	6
42	Categorizing Susceptibility of Clinical Isolates of <i>Candida auris</i> to Amphotericin B, Caspofungin, and Fluconazole by Use of the CLSI M44-A2 Disk Diffusion Method. Journal of Clinical Microbiology, 2021, 59, .	1.8	6
43	Antifungal Susceptibility Testing: The Times They Are A-Changing. Clinical Microbiology Newsletter, 2019, 41, 85-90.	0.4	2
44	Hot Topics in Antifungal Susceptibility Testing: a New Drug, a Bad Bug, Sweeping Caspofungin Testing under the Rug, and Solving the Epidemiological Cutoff Value Shrug. Clinical Microbiology Newsletter, 2016, 38, 103-108.	0.4	1