
Gerard W O'keeffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12119983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease. Neural Regeneration Research, 2022, 17, 38.	3.0	5
2	NME1 Protects Against Neurotoxin-, α-Synuclein- and LRRK2-Induced Neurite Degeneration in Cell Models of Parkinson's Disease. Molecular Neurobiology, 2022, 59, 61-76.	4.0	6
3	Maternal Immune Activation and Interleukin 17A in the Pathogenesis of Autistic Spectrum Disorder and Why It Matters in the COVID-19 Era. Frontiers in Psychiatry, 2022, 13, 823096.	2.6	5
4	Gene Co-expression Analysis of the Human Substantia Nigra Identifies ZNHIT1 as an SNCA Co-expressed Gene that Protects Against α-Synuclein-Induced Impairments in Neurite Growth and Mitochondrial Dysfunction in SH-SY5Y Cells. Molecular Neurobiology, 2022, 59, 2745-2757.	4.0	1
5	Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson's disease. Brain, Behavior, and Immunity, 2022, 102, 151-160.	4.1	12
6	Characterisation of the consequences of maternal immune activation on distinct cell populations in the developing rat spinal cord. Journal of Anatomy, 2022, 241, 938-950.	1.5	1
7	The Universal Design for Learning Framework in Anatomical Sciences Education. Anatomical Sciences Education, 2021, 14, 71-78.	3.7	18
8	Growth differentiation factor 5 exerts neuroprotection in an α-synuclein rat model of Parkinson's disease. Brain, 2021, 144, e14-e14.	7.6	10
9	Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress?. Molecular Neurobiology, 2021, 58, 2734-2756.	4.0	38
10	Quinacrine and Niclosamide Promote Neurite Growth in Midbrain Dopaminergic Neurons Through the Canonical BMP-Smad Pathway and Protect Against Neurotoxin and α-Synuclein-Induced Neurodegeneration. Molecular Neurobiology, 2021, 58, 3405-3416.	4.0	4
11	LMK235, a small molecule inhibitor of HDAC4/5, protects dopaminergic neurons against neurotoxin- and α-synuclein-induced degeneration in cellular models of Parkinson's disease. Molecular and Cellular Neurosciences, 2021, 115, 103642.	2.2	14
12	The association between caesarean section and cognitive ability in childhood. Social Psychiatry and Psychiatric Epidemiology, 2020, 55, 1231-1240.	3.1	6
13	Association between preeclampsia and autism spectrum disorder: a populationâ€based study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2020, 61, 131-139.	5.2	36
14	Temporally Altered miRNA Expression in a Piglet Model of Hypoxic Ischemic Brain Injury. Molecular Neurobiology, 2020, 57, 4322-4344.	4.0	12
15	STRAP and NME1 Mediate the Neurite Growth-Promoting Effects of the Neurotrophic Factor GDF5. IScience, 2020, 23, 101457.	4.1	11
16	Editorial: The Role of Stem Cells, Epigenetics and MicroRNAs in Parkinson's Disease. Frontiers in Neuroscience, 2020, 14, 515.	2.8	3
17	Alterations in α-synuclein and PINK1 expression reduce neurite length and induce mitochondrial fission and Golgi fragmentation in midbrain neurons. Neuroscience Letters, 2020, 720, 134777.	2.1	11
18	The Association Between Preeclampsia and Childhood Development and Behavioural Outcomes. Maternal and Child Health Journal, 2020, 24, 727-738.	1.5	5

#	Article	IF	CITATIONS
19	The class II histone deacetylases as therapeutic targets for Parkinson's disease. Neuronal Signaling, 2020, 4, NS20200001.	3.2	26
20	Association of distinct type 1 bone morphogenetic protein receptors with different molecular pathways and survival outcomes in neuroblastoma. Neuronal Signaling, 2020, 4, NS20200006.	3.2	4
21	The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson's disease. Neural Regeneration Research, 2020, 15, 1432.	3.0	17
22	Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: a systematic review and meta-analysis. Social Psychiatry and Psychiatric Epidemiology, 2019, 54, 1299-1309.	3.1	83
23	Gene Co-expression Analysis Identifies Histone Deacetylase 5 and 9 Expression in Midbrain Dopamine Neurons and as Regulators of Neurite Growth via Bone Morphogenetic Protein Signaling. Frontiers in Cell and Developmental Biology, 2019, 7, 191.	3.7	13
24	Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Parkinsonism and Related Disorders, 2019, 64, 194-201.	2.2	13
25	Radiologist's views on anatomical knowledge amongst junior doctors and the teaching of anatomy in medical curricula. Annals of Anatomy, 2019, 223, 70-76.	1.9	24
26	4-Hydroxychalcone Induces Cell Death via Oxidative Stress in <i>MYCN</i> -Amplified Human Neuroblastoma Cells. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	5
27	A perspective on preâ€eclampsia and neurodevelopmental outcomes in the offspring: Does maternal inflammation play a role?. International Journal of Developmental Neuroscience, 2019, 77, 69-76.	1.6	19
28	The Effect of Hypertensive Disorders of Pregnancy on the Risk of ADHD in the Offspring. Journal of Attention Disorders, 2019, 23, 692-701.	2.6	26
29	Mild prenatal hypoxia-ischemia leads to social deficits and central and peripheral inflammation in exposed offspring. Brain, Behavior, and Immunity, 2018, 69, 418-427.	4.1	34
30	Exposure to Hypertensive Disorders of Pregnancy Increases the Risk of Autism Spectrum Disorder in Affected Offspring. Molecular Neurobiology, 2018, 55, 5557-5564.	4.0	34
31	Placental FKBP51 mediates a link between second trimester maternal anxiety and birthweight in female infants. Scientific Reports, 2018, 8, 15151.	3.3	10
32	Inhibition of <i>miR-181a</i> promotes midbrain neuronal growth through a Smad1/5-dependent mechanism: implications for Parkinson's disease. Neuronal Signaling, 2018, 2, NS20170181.	3.2	26
33	Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson's disease. Parkinsonism and Related Disorders, 2018, 56, 9-15.	2.2	58
34	Association of Hypertensive Disorders of Pregnancy With Risk of Neurodevelopmental Disorders in Offspring. JAMA Psychiatry, 2018, 75, 809.	11.0	172
35	Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation. Brain, Behavior, and Immunity, 2017, 63, 21-34.	4.1	49
36	Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism and Related Disorders, 2017, 38, 19-25.	2.2	20

#	Article	IF	CITATIONS
37	A new role for placental IL-6 signalling in determining neurodevelopmental outcome. Brain, Behavior, and Immunity, 2017, 62, 9-10.	4.1	2
38	Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth. Neuroscience Letters, 2017, 643, 32-37.	2.1	11
39	Maternal distress in late pregnancy alters obstetric outcomes and the expression of genes important for placental glucocorticoid signalling. Psychiatry Research, 2017, 255, 17-26.	3.3	31
40	Romidepsin induces caspase-dependent cell death in human neuroblastoma cells. Neuroscience Letters, 2017, 653, 12-18.	2.1	8
41	Hypertensive disorders of pregnancy and risk of neurodevelopmental disorders in the offspring: a systematic review and meta-analysis protocol. BMJ Open, 2017, 7, e018313.	1.9	17
42	Googling in anatomy education: Can google trends inform educators of national online search patterns of anatomical syllabi?. Anatomical Sciences Education, 2017, 10, 152-159.	3.7	9
43	Zeb2 is a negative regulator of midbrain dopaminergic axon growth and target innervation. Scientific Reports, 2017, 7, 8568.	3.3	24
44	Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson's disease. Neuronal Signaling, 2017, 1, NS20170027.	3.2	19
45	Class-Specific Histone Deacetylase Inhibitors Promote 11-Beta Hydroxysteroid Dehydrogenase Type 2 Expression in JEG-3 Cells. International Journal of Cell Biology, 2017, 2017, 1-10.	2.5	12
46	Targeting transcriptional regulators to regenerate midbrain dopaminergic axons in Parkinson's disease. Neural Regeneration Research, 2017, 12, 1814.	3.0	0
47	An Attitudinal Survey of Undergraduate Neuroscience Students Regarding Their Views on the Relevance of Lectures to their Education. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2017, 16, A28-A33.	0.0	2
48	Magnesium sulphate prevents lipopolysaccharide-induced cell death in an in vitro model of the human placenta. Pregnancy Hypertension, 2016, 6, 356-360.	1.4	5
49	Anatomy education for the YouTube generation. Anatomical Sciences Education, 2016, 9, 90-96.	3.7	214
50	The need for ethical and pedagogical frameworks for developing online media in anatomy education. Anatomical Sciences Education, 2016, 9, 498-499.	3.7	5
51	A Small Molecule Activator of p300/CBP Histone Acetyltransferase Promotes Survival and Neurite Growth in a Cellular Model of Parkinson's Disease. Neurotoxicity Research, 2016, 30, 510-520.	2.7	30
52	Region-specific role of growth differentiation factor-5 in the establishment of sympathetic innervation. Neural Development, 2016, 11, 4.	2.4	23
53	Cadaveric anatomy in the future of medical education: What is the surgeons view?. Anatomical Sciences Education, 2016, 9, 203-208.	3.7	64
54	Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism and Related Disorders, 2016, 27, 1-8.	2.2	148

#	Article	IF	CITATIONS
55	Nociceptin/Orphanin FQ Inhibits the Survival and Axon Growth of Midbrain Dopaminergic Neurons Through a p38-MAPK Dependent Mechanism. Molecular Neurobiology, 2016, 53, 7284-7297.	4.0	11
56	Protocol for evaluation of neurotrophic strategies in Parkinson. Journal of Biological Methods, 2016, 3, e50.	0.6	10
57	Neurotrophic factor therapy for Parkinson′s disease: past, present and future. Neural Regeneration Research, 2016, 11, 205.	3.0	48
58	The Epigenome as a therapeutic target for Parkinson's disease. Neural Regeneration Research, 2016, 11, 1735.	3.0	35
59	Viral vector delivery of neurotrophic factors for Parkinson's disease therapy. Expert Reviews in Molecular Medicine, 2015, 17, e8.	3.9	28
60	Class-Ila Histone Deacetylase Inhibition Promotes the Growth of Neural Processes and Protects Them Against Neurotoxic Insult. Molecular Neurobiology, 2015, 51, 1432-1442.	4.0	31
61	Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 2015, 60, 58-74.	2.7	224
62	Zeb2: A multifunctional regulator of nervous system development. Progress in Neurobiology, 2015, 132, 81-95.	5.7	88
63	Downregulation of Umbilical Cord Blood Levels of miR-374a in Neonatal Hypoxic Ischemic Encephalopathy. Journal of Pediatrics, 2015, 167, 269-273.e2.	1.8	59
64	Activin signalling and pre-eclampsia: From genetic risk to pre-symptomatic biomarker. Cytokine, 2015, 71, 360-365.	3.2	26
65	Knockdown of interleukin-1 receptor 1 is not neuroprotective in the 6-hydroxydopamine striatal lesion rat model of Parkinson's disease. International Journal of Neuroscience, 2015, 125, 70-77.	1.6	6
66	Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics, 2014, 9, 816-822.	2.7	79
67	The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age. Differentiation, 2014, 88, 124-130.	1.9	15
68	Neurotrophic factors: from neurodevelopmental regulators to novel therapies for Parkinson′s disease. Neural Regeneration Research, 2014, 9, 1708.	3.0	48
69	Predicting infant neurodevelopmental outcomes using the placenta?. Trends in Molecular Medicine, 2014, 20, 303-305.	6.7	12
70	Roles for the TGFÎ ² Superfamily in the Development and Survival of Midbrain Dopaminergic Neurons. Molecular Neurobiology, 2014, 50, 559-573.	4.0	32
71	Ventral midbrain neural stem cells have delayed neurogenic potential in vitro. Neuroscience Letters, 2014, 559, 193-198.	2.1	1
72	Expression of endogenous Mkp1 in 6-OHDA rat models of Parkinson's disease. SpringerPlus, 2014, 3, 205.	1.2	3

#	Article	IF	CITATIONS
73	Canonical BMP–Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons. NeuroMolecular Medicine, 2014, 16, 473-489.	3.4	46
74	Microbiota and neurodevelopmental windows: implications for brain disorders. Trends in Molecular Medicine, 2014, 20, 509-518.	6.7	852
75	6-Hydroxydopamine induces distinct alterations in GDF5 and GDNF mRNA expression in the rat nigrostriatal system in vivo. Neuroscience Letters, 2014, 561, 176-181.	2.1	4
76	BMP-Smad 1/5/8 signalling in the development of the nervous system. Progress in Neurobiology, 2013, 109, 28-41.	5.7	137
77	BMP2 and GDF5 induce neuronal differentiation through a Smad dependant pathway in a model of human midbrain dopaminergic neurons. Molecular and Cellular Neurosciences, 2013, 56, 263-271.	2.2	46
78	Mitogen-Activated Protein Kinase Phosphatase (MKP)-1 as a Neuroprotective Agent: Promotion of the Morphological Development of Midbrain Dopaminergic Neurons. NeuroMolecular Medicine, 2013, 15, 435-446.	3.4	33
79	NF-κB: Emerging roles in hippocampal development and function. International Journal of Biochemistry and Cell Biology, 2013, 45, 1821-1824.	2.8	42
80	The spatial and temporal arrangement of the radial glial scaffold suggests a role in axon tract formation in the developing spinal cord. Journal of Anatomy, 2013, 222, 203-213.	1.5	16
81	Negative regulation of TLX by IL-1Î ² correlates with an inhibition of adult hippocampal neural precursor cell proliferation. Brain, Behavior, and Immunity, 2013, 33, 7-13.	4.1	61
82	Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Developmental Biology, 2013, 379, 123-138.	2.0	158
83	Regulation of neurite growth by tumour necrosis superfamily member RANKL. Open Biology, 2013, 3, 120150.	3.6	26
84	The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling. Biology Open, 2012, 1, 1016-1023.	1.2	14
85	A role for interleukin-11² in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Molecular and Cellular Neurosciences, 2012, 49, 311-321.	2.2	108
86	Transplantation of novel human <scp>GDF</scp> 5â€expressing <scp>CHO</scp> cells is neuroprotective in models of <scp>P</scp> arkinson's disease. Journal of Cellular and Molecular Medicine, 2012, 16, 2451-2460.	3.6	14
87	Exposure of foetal neural progenitor cells to ILâ€1β impairs their proliferation and alters their differentiation – a role for maternal inflammation?. Journal of Neurochemistry, 2012, 120, 964-973.	3.9	73
88	IL-1β inhibits axonal growth of developing sympathetic neurons. Molecular and Cellular Neurosciences, 2011, 48, 142-150.	2.2	24
89	NGF-promoted axon growth and target innervation requires GITRL-GITR signaling. Nature Neuroscience, 2008, 11, 135-142.	14.8	55
90	Regulation of axonal and dendritic growth by the extracellular calcium-sensing receptor. Nature Neuroscience, 2008, 11, 285-291.	14.8	97

#	Article	IF	CITATIONS
91	Nuclear Factor ÂB Signaling Either Stimulates or Inhibits Neurite Growth Depending on the Phosphorylation Status of p65/RelA. Journal of Neuroscience, 2008, 28, 8246-8256.	3.6	78
92	The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson's disease treatment. Journal of Anatomy, 2005, 207, 219-226.	1.5	36
93	Expression of growth differentiation factor-5 in the developing and adult rat brain. Developmental Brain Research, 2004, 151, 199-202.	1.7	28
94	Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. Journal of Neurocytology, 2004, 33, 479-488.	1.5	48
95	Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: A systematic review and meta-analysis protocol. HRB Open Research, 0, 1, 15.	0.6	3