Anthony Hamins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1211957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and computational study on the glowing ignition of wood. Fire and Materials, 2023, 47, 638-650.	2.0	0
2	A calibration and sampling technique for quantifying the chemical structure in fires using <scp>GC</scp> / <scp>MSD</scp> analysis. Fire and Materials, 2022, 46, 3-11.	2.0	2
3	Performance and failure mechanism of fire barriers in <scp>fullâ€scale</scp> chair mockâ€ups. Fire and Materials, 2022, 46, 329-346.	2.0	5
4	Demonstration of an <scp>allâ€inâ€one</scp> solution for fire safe upholstery furniture: A benign backcoating for smoldering and <scp>flameâ€resistant</scp> cover fabrics. Fire and Materials, 2022, 46, 677-693.	2.0	5
5	Prevention of cooktop ignition using detection and multi-step machine learning algorithms. Fire Safety Journal, 2021, 120, 103043.	3.1	7
6	The characteristics of a 1†m methanol pool fire. Fire Safety Journal, 2021, 120, 103121.	3.1	14
7	The chemical structure of a 30 cm methanol pool fire. Fire and Materials, 2021, 45, 429-434.	2.0	4
8	Chemical structure of medium-scale liquid pool fires. Fire Safety Journal, 2021, 120, 103099.	3.1	4
9	Mixture fraction analysis of combustion products in medium-scale pool fires. Proceedings of the Combustion Institute, 2021, 38, 4935-4942.	3.9	4
10	The character of residential cooktop fires. Journal of Fire Sciences, 2021, 39, 142-163.	2.0	6
11	Why are cooktop fires so hazardous?. Fire Safety Journal, 2021, 120, 103070.	3.1	13
12	Sensors and Machine Learning Models to Prevent Cooktop Ignition and Ignore Normal Cooking. Fire Technology, 2021, 57, 2981-3004.	3.0	3
13	The evolving temperature field in a 1-m methanol pool fire. Journal of Fire Sciences, 2021, 39, 309-323.	2.0	7
14	Thin Filament Pyrometry Field Measurements in a Medium-Scale Pool Fire. Fire Technology, 2020, 56, 837-861.	3.0	6
15	IAFSS agenda 2030 for a fire safe world. Fire Safety Journal, 2019, 110, 102889.	3.1	43
16	Energy balance in medium-scale methanol, ethanol, and acetone pool fires. Fire Safety Journal, 2019, 107, 44-53.	3.1	37
17	Bench-scale test facility for evaluating the performance of thermal imagers for fire service applications. Journal of Fire Sciences, 2018, 36, 97-110.	2.0	0
18	Characterization of stovetop cooking oil fires. Journal of Fire Sciences, 2018, 36, 224-239.	2.0	8

#	Article	IF	CITATIONS
19	Structural Fire Experimental Capabilities at the NIST National Fire Research Laboratory. Fire Technology, 2016, 52, 959-966.	3.0	18
20	Humans' Critical Role in Smart Systems: A Smart Firefighting Example. IEEE Internet Computing, 2015, 19, 28-31.	3.3	11
21	Realizing the Vision of Smart Fire Fighting. IEEE Potentials, 2015, 34, 35-40.	0.3	17
22	Reconstruction of the Fires and Thermal Environment in World Trade Center Buildings 1, 2, and 7. Fire Technology, 2013, 49, 679-707.	3.0	33
23	An experimental study of acoustically driven medium-scale pool fires. Journal of Mechanical Science and Technology, 2011, 25, 2035-2041.	1.5	Ο
24	Mixture fraction analysis of combustion products in the upper layer of reduced-scale compartment fires. Combustion and Flame, 2009, 156, 467-476.	5.2	20
25	Energy balance in a large compartment fire. Fire Safety Journal, 2008, 43, 180-188.	3.1	41
26	Meaningful performance evaluation conditions for fire service thermal imaging cameras. Fire Safety Journal, 2008, 43, 541-550.	3.1	27
27	Performance of liquid-crystal displays for fire-service thermal-imaging cameras. Journal of the Society for Information Display, 2008, 16, 703.	2.1	Ο
28	Determination of Planck Mean Absorption Coefficients for Hydrocarbon Fuels. Combustion Science and Technology, 2008, 180, 616-630.	2.3	11
29	On the Temperature Measurement Bias and Time Response of an Aspirated Thermocouple in Fire Environment. Journal of Fire Sciences, 2008, 26, 509-529.	2.0	11
30	On the Fire Behavior Due to the Ventilation Condition in the Fire Compartment. Transactions of the Korean Society of Mechanical Engineers, B, 2008, 32, 367-373.	0.1	0
31	Effect of buoyancy on the radiative extinction limit of low-strain-rate nonpremixed methane–air flames. Combustion and Flame, 2007, 151, 225-234.	5.2	19
32	LCD display screen performance testing for handheld thermal imaging cameras. , 2006, 6207, 298.		3
33	Numerical Simulation of the Howard Street Tunnel Fire. Fire Technology, 2006, 42, 273-281.	3.0	35
34	First responder thermal imaging cameras: establishment of representative performance testing conditions. , 2006, , .		5
35	First responder thermal imaging cameras: development of performance metrics and test methods. , 2006, , .		3
36	Characterization of Candle Flames. Journal of Fire Protection Engineering, 2005, 15, 265-285.	0.8	54

#	Article	IF	CITATIONS
37	<title>Evaluation of thermal imaging cameras used in fire fighting applications</title> ., 2004, , .		7
38	<title>Development of a performance evaluation facility for fire fighting thermal imagers</title> . , 2004, , .		7
39	Suppression limits of low strain rate non-premixed methane flames. Combustion and Flame, 2003, 133, 299-310.	5.2	63
40	Numerical Modeling Of Pool Fires Using Les And Finite Volume Method For Radiation. Fire Safety Science, 2003, 7, 383-394.	0.3	50
41	Investigation of velocity boundary conditions in counterflow flames. Journal of Mechanical Science and Technology, 2002, 16, 262-269.	0.4	3
42	Characterization of Particulate From Fires Burning Silicone Fluids. Journal of Heat Transfer, 2001, 123, 1093-1097.	2.1	5
43	Reduced gravity combustion of thermoplastic spheres11Contribution from the National Institute of Standards and Technology; not subject to copyright in the United States Combustion and Flame, 2000, 120, 61-74.	5.2	33
44	Suppression of a non-premixed flame behind a step. Proceedings of the Combustion Institute, 2000, 28, 2957-2964.	3.9	10
45	A numerical investigation of radiative effects in near-extinction microgravity methane-air nonpremixed flames. , 2000, , .		1
46	Inhibition effectiveness of halogenated compounds. Combustion and Flame, 1998, 112, 147-160.	5.2	116
47	Suppression of ignition over a heated metal surface. Combustion and Flame, 1998, 112, 161-170.	5.2	10
48	Flame extinction by sodium bicarbonate powder in a cup burner. Proceedings of the Combustion Institute, 1998, 27, 2857-2864.	0.3	47
49	Heat release mechanisms in inhibited laminar counterflow flames. Combustion and Flame, 1996, 104, 27-40.	5.2	15
50	Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane. Combustion and Flame, 1996, 107, 351-367.	5.2	124
51	Suppression of a baffle-stabilied spray flame by halogenated agents. Proceedings of the Combustion Institute, 1996, 26, 1413-1420.	0.3	4
52	Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combustion and Flame, 1995, 102, 161-169.	5.2	192
53	Heat Feedback to the Fuel Surface in Pool Fires. Combustion Science and Technology, 1994, 97, 37-62.	2.3	179
54	Simultaneous optical measurement of soot volume fraction and temperature in premixed flames. Combustion and Flame, 1994, 99, 174-186.	5.2	84

#	Article	IF	CITATIONS
55	Extinction of nonpremixed flames with halogenated fire suppressants. Combustion and Flame, 1994, 99, 221-230.	5.2	83
56	The structure of inhibited counterflowing nonpremixed flames. Combustion and Flame, 1994, 98, 107-122.	5.2	10
57	Estimate of flame radiance via a single location measurement in liquid pool fires. Combustion and Flame, 1991, 86, 223-228.	5.2	82
58	Concentration measurements of OH· and equilibrium analysis in a laminar methane-air diffusion flame. Combustion and Flame, 1990, 79, 366-380.	5.2	70
59	Mechanistic Studies of Toluene Destruction in Diffusion Flames. Combustion Science and Technology, 1990, 71, 175-195.	2.3	35
60	Behavior of primary radicals during thermal degradation of poly(methyl methacrylate). Polymer Degradation and Stability, 1989, 26, 161-184.	5.8	88
61	The structure of diffusion flames burning pure, binary, and ternary solutions of methanol, heptane, and toluene. Combustion and Flame, 1987, 68, 295-307.	5.2	69