Jean-Noël Octave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12118306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia. Acta Neuropathologica Communications, 2021, 9, 108.	5.2	22
2	Regulation of PPARÎ \pm by APP in Alzheimer disease affects the pharmacological modulation of synaptic activity. JCl Insight, 2021, 6, .	5.0	8
3	Overexpression of wild-type human amyloid precursor protein alters GABAergic transmission. Scientific Reports, 2021, 11, 17600.	3.3	11
4	Alzheimer's Disease, a Lipid Story: Involvement of Peroxisome Proliferator-Activated Receptor α. Cells, 2020, 9, 1215.	4.1	30
5	Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional Activator Neuronal PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. ENeuro, 2020, 7, ENEURO.0322-19.2020.	1.9	24
6	Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathologica, 2019, 137, 599-617.	7.7	259
7	Influence of the familial Alzheimer's disease–associated T43I mutation on the transmembrane structure and γ-secretase processing of the C99 peptide. Journal of Biological Chemistry, 2019, 294, 5854-5866.	3.4	5
8	Editorial: Risk Factors and Outcome Predicating Biomarker of Neurodegenerative Diseases. Frontiers in Neurology, 2019, 10, 45.	2.4	6
9	Sex-regulated gene dosage effect of PPARα on synaptic plasticity. Life Science Alliance, 2019, 2, e201800262.	2.8	16
10	Contribution of the Endosomal-Lysosomal and Proteasomal Systems in Amyloid-β Precursor Protein Derived Fragments Processing. Frontiers in Cellular Neuroscience, 2018, 12, 435.	3.7	24
11	A Role for GDNF and Soluble APP as Biomarkers of Amyotrophic Lateral Sclerosis Pathophysiology. Frontiers in Neurology, 2018, 9, 384.	2.4	33
12	Tau interactome mappingÂbased identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathologica, 2017, 133, 731-749.	7.7	74
13	Amyloid precursor protein reduction enhances the formation of neurofibrillary tangles in a mutant tau transgenic mouse model. Neurobiology of Aging, 2017, 55, 202-212.	3.1	15
14	Cortical cells reveal APP as a new player in the regulation of GABAergic neurotransmission. Scientific Reports, 2017, 7, 370.	3.3	31
15	β-Sheet Structure within the Extracellular Domain of C99 Regulates Amyloidogenic Processing. Scientific Reports, 2017, 7, 17159.	3.3	17
16	Presenilin 2-Dependent Maintenance of Mitochondrial Oxidative Capacity and Morphology. Frontiers in Physiology, 2017, 8, 796.	2.8	40
17	Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic Aβ Oligomers in Cells. Frontiers in Aging Neuroscience, 2016, 8, 107.	3.4	28
18	Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. Journal of Neuroinflammation, 2016, 13, 20.	7.2	73

#	Article	IF	CITATIONS
19	APPâ€dependent glial cell lineâ€derived neurotrophic factor gene expression drives neuromuscular junction formation. FASEB Journal, 2016, 30, 1696-1711.	0.5	27
20	Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathologica, 2016, 131, 549-569.	7.7	129
21	Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio, 2015, 5, 763-773.	2.3	25
22	Characterization of Pterocarpus erinaceus kino extract and its gamma-secretase inhibitory properties. Journal of Ethnopharmacology, 2015, 163, 192-202.	4.1	17
23	Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice. Acta Neuropathologica, 2015, 129, 875-894.	7.7	122
24	Epigenetic Regulations of Immediate Early Genes Expression Involved in Memory Formation by the Amyloid Precursor Protein of Alzheimer Disease. PLoS ONE, 2014, 9, e99467.	2.5	60
25	Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease. FASEB Journal, 2014, 28, 2620-2631.	0.5	37
26	Conformational Changes Induced by the A21G Flemish Mutation in the Amyloid Precursor Protein Lead to Increased Al ² Production. Structure, 2014, 22, 387-396.	3.3	40
27	Critical Role of Aquaporins in Interleukin 1β (IL-1β)-induced Inflammation. Journal of Biological Chemistry, 2014, 289, 13937-13947.	3.4	65
28	Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiology of Disease, 2014, 62, 100-112.	4.4	54
29	Gamma-Secretase Inhibitor Activity of a <i>Pterocarpus erinaceus</i> Extract. Neurodegenerative Diseases, 2014, 14, 39-51.	1.4	12
30	P1-033: AMYLOID-INDUCED TAUOPATHY CONTRIBUTES TO SYNAPTIC AND COGNITIVE DEFICITS IN A TRANSGENIC MODEL FOR ALZHEIMER'S DISEASE. , 2014, 10, P315-P315.		0
31	From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein. Journal of Neurochemistry, 2013, 126, 183-190.	3.9	44
32	Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Molecular Medicine, 2013, 5, 608-625.	6.9	88
33	Epigenetic Induction of EGR-1 Expression by the Amyloid Precursor Protein during Exposure to Novelty. PLoS ONE, 2013, 8, e74305.	2.5	22
34	Lack of Tau Proteins Rescues Neuronal Cell Death and Decreases Amyloidogenic Processing of APP in APP/PS1 Mice. American Journal of Pathology, 2012, 181, 1928-1940.	3.8	116
35	Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB Journal, 2012, 26, 855-867.	0.5	40
36	Inhibition of neuronal calcium oscillations by cell surface APP phosphorylated on T668. Neurobiology of Aging, 2011, 32, 2308-2313.	3.1	13

#	Article	IF	CITATIONS
37	Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochemical Journal, 2010, 425, 127-139.	3.7	144
38	Network Excitability Dysfunction in Alzheimer's Disease: Insights from In Vitro and In Vivo Models. Reviews in the Neurosciences, 2010, 21, 153-71.	2.9	35
39	What is the role of amyloid precursor protein dimerization?. Cell Adhesion and Migration, 2010, 4, 268-272.	2.7	36
40	In vitro screening on β-amyloid peptide production of plants used in traditional medicine for cognitive disorders. Journal of Ethnopharmacology, 2010, 131, 585-591.	4.1	26
41	Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. FASEB Journal, 2009, 23, 4158-4167.	0.5	48
42	Expression of Human Amyloid Precursor Protein in Rat Cortical Neurons Inhibits Calcium Oscillations. Journal of Neuroscience, 2009, 29, 4708-4718.	3.6	54
43	A helix-to-coil transition at the Îμ-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1421-1426.	7.1	115
44	Amyloidogenic Processing but Not Amyloid Precursor Protein (APP) Intracellular C-terminal Domain Production Requires a Precisely Oriented APP Dimer Assembled by Transmembrane GXXXG Motifs. Journal of Biological Chemistry, 2008, 283, 7733-7744.	3.4	125
45	Phosphorylation of APP695 at Thr668 decreases γ-cleavage and extracellular Aβ. Biochemical and Biophysical Research Communications, 2007, 357, 1004-1010.	2.1	28
46	Fe65 does not stabilize AICD during activation of transcription in a luciferase assay. Biochemical and Biophysical Research Communications, 2007, 361, 317-322.	2.1	14
47	Inhibitors of Amyloid Toxicity Based on β-sheet Packing of Aβ40 and Aβ42. Biochemistry, 2006, 45, 5503-5516.	2.5	183
48	Specific regulation of rat glial cell line-derived neurotrophic factor gene expression by riluzole in C6 glioma cells. Journal of Neurochemistry, 2006, 97, 128-139.	3.9	24
49	Lactacystin decreases amyloid-β peptide production by inhibiting β-secretase activity. Journal of Neuroscience Research, 2006, 84, 1311-1322.	2.9	9
50	Calcium-mediated Transient Phosphorylation of Tau and Amyloid Precursor Protein Followed by Intraneuronal Amyloid-β Accumulation. Journal of Biological Chemistry, 2006, 281, 39907-39914.	3.4	99
51	Lithium Chloride Increases the Production of Amyloid-β Peptide Independently from Its Inhibition of Glycogen Synthase Kinase 3. Journal of Biological Chemistry, 2005, 280, 33220-33227.	3.4	43
52	Presenilin 1 Stabilizes the C-terminal Fragment of the Amyloid Precursor Protein Independently of Î ³ -Secretase Activity. Journal of Biological Chemistry, 2004, 279, 25333-25338.	3.4	23
53	Intraneuronal amyloid-β1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. Journal of Neurochemistry, 2004, 88, 1140-1150.	3.9	127
54	Intracellular Amyloid-β1–42, but Not Extracellular Soluble Amyloid-β Peptides, Induces Neuronal Apoptosis. Journal of Biological Chemistry, 2002, 277, 15666-15670.	3.4	181

#	Article	IF	CITATIONS
55	Correlation between β-amyloid peptide production and human APP-induced neuronal death. Peptides, 2002, 23, 1199-1204.	2.4	15
56	Failure of the interaction between presenilin 1 and the substrate of Î ³ -secretase to produce AÎ ² in insect cells. Journal of Neurochemistry, 2002, 83, 390-399.	3.9	13
57	The Role of Presenilin-1 in the γ-Secretase Cleavage of the Amyloid Precursor Protein of Alzheimer's Disease. Journal of Biological Chemistry, 2000, 275, 1525-1528.	3.4	36
58	Transgenic Expression of the Shortest Human Tau Affects Its Compartmentalization and Its Phosphorylation as in the Pretangle Stage of Alzheimer's Disease. American Journal of Pathology, 1999, 154, 255-270.	3.8	200
59	The Long Term Adenoviral Expression of the Human Amyloid Precursor Protein Shows Different Secretase Activities in Rat Cortical Neurons and Astrocytes. Journal of Biological Chemistry, 1998, 273, 28931-28936.	3.4	28
60	Proteolytical processing of mutated human amyloid precursor protein in transgenic mice. Molecular Brain Research, 1997, 47, 108-116.	2.3	33
61	Missense Mutations Associated with Familial Alzheimer's Disease in Sweden Lead to the Production of the Amyloid Peptide without Internalization of Its Precursor. Biochemical and Biophysical Research Communications, 1996, 218, 89-96.	2.1	21
62	The Amyloid Peptide and Its Precursor in Alzheimer's Disease. Reviews in the Neurosciences, 1995, 6, .	2.9	27
63	Lack of Rapid Desensitization of Ca ²⁺ Responses in Transfected CHO Cells Expressing the Rat Neurotensin Receptor Despite Agonistâ€induced Internalization. Journal of Neurochemistry, 1995, 64, 2518-2525.	3.9	13
64	Receptor mediated internalization of neurotensin in transfected Chinese hamster ovary cells. Biochemical Pharmacology, 1994, 47, 89-91.	4.4	21
65	The amyloid peptide of Alzheimer's disease is not produced by internal initiation of translation generating C-terminal amyloidogenic fragments of its precursor. Neuroscience Letters, 1994, 182, 227-230.	2.1	8
66	Postnatal ontogeny of the rat brain neurotensin receptor mRNA. Neuroscience Letters, 1993, 157, 45-48.	2.1	19
67	Activation of protein kinase C increases the extracellular release of the transmembrane amyloid protein precursor of Alzhemier's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1181, 214-218.	3.8	12
68	A new monoclonal antibody against the anionic domain of the amyloid precursor protein of Alzheimer's disease. NeuroReport, 1993, 5, 289-292.	1.2	11
69	Phospholipase C activation by neurotensin and neuromedin N in Chinese hamster ovary cells expressing the rat neurotensin receptor. Molecular Brain Research, 1992, 15, 332-338.	2.3	54
70	Rapid agonist-induced decrease of neurotensin receptors from the cell surface in rat cultured neurons. Biochemical Pharmacology, 1991, 42, 2265-2274.	4.4	44
71	Glycosylation of the amyloid peptide precursor containing the Kunitz protease inhibitor domain improves the inhibition of trypsin. Biochemical and Biophysical Research Communications, 1990, 171, 1015-1021.	2.1	19
72	Subcellular localization of transferrin protein and iron in the perfused rat liver. Effect of Triton WR 1339, digitonin and temperature. FEBS Journal, 1986, 155, 47-55.	0.2	28

#	Article	IF	CITATIONS
73	Chapter 10 The Role of Endocytosis and Lysosomes in Cell Physiology. Current Topics in Membranes and Transport, 1985, , 413-458.	0.6	4
74	Cellular pharmacology of deferrioxamine B and derivatives in cultured rat hepatocytes in relation to iron mobilization. Biochemical Pharmacology, 1985, 34, 1175-1183.	4.4	74
75	Iron uptake and utilization by mammalian cells. I: Cellular uptake of transferrin and iron. Trends in Biochemical Sciences, 1983, 8, 217-220.	7.5	145
76	Iron mobilization from cultured hepatocytes: Effect of desferrioxamine B. Biochemical Pharmacology, 1983, 32, 3413-3418.	4.4	31
77	Transferrin protein and iron uptake by isolated rat erythroblasts. FEBS Letters, 1982, 137, 119-123.	2.8	29
78	Transferrin protein and iron uptake by cultured hepatocytes. FEBS Letters, 1982, 150, 365-369.	2.8	64
79	Transferrin Uptake by Cultured Rat Embryo Fibroblasts. The Influence of Lysosomotropic Agents, Iron Chelators and Colchicine on the Uptake of Iron and Transferrin. FEBS Journal, 1982, 123, 235-240.	0.2	58
80	Iron mobilization from cultured rat fibroblasts and hepatocytes. FEBS Letters, 1981, 127, 204-206.	2.8	17
81	Transferrin Uptake by Cultured Rat Embryo Fibroblasts. FEBS Journal, 1981, 115, 611-618.	0.2	124
82	Transferrin protein and iron uptake by cultured rat fibroblasts. FEBS Letters, 1979, 108, 127-130.	2.8	69