Hamidreza Zobeiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12118100/publications.pdf

Version: 2024-02-01

713013 840119 21 425 11 21 citations h-index g-index papers 21 21 21 312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interface Thermal Resistance between Monolayer WSe ₂ and SiO ₂ : Raman Probing with Consideration of Optical–Acoustic Phonon Nonequilibrium. Advanced Materials Interfaces, 2022, 9, .	1.9	5
2	Imaging Anisotropic Waveguide Exciton Polaritons in Tin Sulfide. Nano Letters, 2022, 22, 1497-1503.	4.5	11
3	Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation. Advanced Science, 2021, 8, 2004712.	5.6	12
4	Coherency between thermal and electrical transport of partly reduced graphene paper. Carbon, 2021, 178, 92-102.	5.4	15
5	Photocurrent in carbon nanotube bundle: Graded Seebeck coefficient phenomenon. Nano Energy, 2021, 86, 106054.	8.2	9
6	Effect of time and spatial domains on monolayer 2D material interface thermal conductance measurement using ns ET-Raman. International Journal of Heat and Mass Transfer, 2021, 179, 121644.	2.5	5
7	Interfacial thermal resistance between nm-thick MoS2 and quartz substrate: A critical revisit under phonon mode-wide thermal non-equilibrium. Nano Energy, 2021, 89, 106364.	8.2	10
8	Dual-pace transient heat conduction in vertically aligned carbon nanotube arrays induced by structure separation. Nano Energy, 2021, 90, 106516.	8.2	5
9	The in-plane structure domain size of nm-thick MoSe ₂ uncovered by low-momentum phonon scattering. Nanoscale, 2021, 13, 7723-7734.	2.8	7
10	Interfacial Thermal Conductance between Monolayer WSe ₂ and SiO ₂ under Consideration of Radiative Electron–Hole Recombination. ACS Applied Materials & Diterfaces, 2020, 12, 51069-51081.	4.0	18
11	Energy and Charge Transport in 2D Atomic Layer Materials: Raman-Based Characterization. Nanomaterials, 2020, 10, 1807.	1.9	8
12	Thermal conductance between water and nm-thick WS ₂ : extremely localized probing using nanosecond energy transport state-resolved Raman. Nanoscale Advances, 2020, 2, 5821-5832.	2.2	6
13	Distinguishing Optical and Acoustic Phonon Temperatures and Their Energy Coupling Factor under Photon Excitation in nm 2D Materials. Advanced Science, 2020, 7, 2000097.	5.6	34
14	Effect of temperature on Raman intensity of nm-thick WS ₂ : combined effects of resonance Raman, optical properties, and interface optical interference. Nanoscale, 2020, 12, 6064-6078.	2.8	41
15	Rigorous prediction of Raman intensity from multi-layer films. Optics Express, 2020, 28, 35272.	1.7	11
16	Polarized Raman of Nanoscale Two-Dimensional Materials: Combined Optical and Structural Effects. Journal of Physical Chemistry C, 2019, 123, 23236-23245.	1.5	16
17	Hot carrier transfer and phonon transport in suspended nm WS2 films. Acta Materialia, 2019, 175, 222-237.	3.8	34
18	Graphene Aerogel Based Bolometer for Ultrasensitive Sensing from Ultraviolet to Far-Infrared. ACS Nano, 2019, 13, 5385-5396.	7.3	42

#	Article	IF	CITATIONS
19	Anisotropic thermal conductivities and structure in lignin-based microscale carbon fibers. Carbon, 2019, 147, 58-69.	5.4	37
20	Frequency-domain energy transport state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe2. International Journal of Heat and Mass Transfer, 2019, 133, 1074-1085.	2.5	48
21	Measurement of the thermal conductivities of suspended MoS ₂ and MoSe ₂ by nanosecond ET-Raman without temperature calibration and laser absorption evaluation. Nanoscale, 2018, 10, 23087-23102.	2.8	51