Sina Y Rabbany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12117943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468, 310-315.	27.8	686
2	Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell, 2013, 26, 204-219.	7.0	548
3	Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature, 2014, 505, 97-102.	27.8	496
4	Endothelial-Derived Angiocrine Signals Induce and Sustain Regenerative Lung Alveolarization. Cell, 2011, 147, 539-553.	28.9	436
5	Expansion and maintenance of human embryonic stem cell–derived endothelial cells by TGFβ inhibition is ld1 dependent. Nature Biotechnology, 2010, 28, 161-166.	17.5	282
6	Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFÎ ² Suppression. Cell, 2012, 151, 559-575.	28.9	212
7	Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nature Medicine, 2016, 22, 154-162.	30.7	201
8	Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature, 2020, 585, 426-432.	27.8	145
9	Continuous Delivery of Stromal Cell-Derived Factor-1 from Alginate Scaffolds Accelerates Wound Healing. Cell Transplantation, 2010, 19, 399-408.	2.5	143
10	Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends in Molecular Medicine, 2003, 9, 109-117.	6.7	126
11	Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 2015, 17, 123-136.	10.3	120
12	Endothelial transplantation rejuvenates aged hematopoietic stem cell function. Journal of Clinical Investigation, 2017, 127, 4163-4178.	8.2	109
13	Molecular determinants of nephron vascular specialization in the kidney. Nature Communications, 2019, 10, 5705.	12.8	83
14	Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nature Communications, 2017, 8, 15374.	12.8	64
15	Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. Journal of Clinical Investigation, 2017, 127, 4242-4256.	8.2	63
16	Trace detection of explosives using a membrane-based displacement immunoassay. Journal of Immunological Methods, 2000, 246, 69-77.	1.4	62
17	Theory of Heterogeneity in Displacement Reactions. Analytical Chemistry, 1997, 69, 170-174.	6.5	57
18	Stromalâ€derived factorâ€1 delivered via hydrogel drugâ€delivery vehicle accelerates wound healing in vivo. Wound Repair and Regeneration, 2011, 19, 420-425.	3.0	52

Sina Y Rabbany

#	Article	IF	CITATIONS
19	Kinetics of antibody binding at solid-liquid interfaces in flow. Journal of Immunological Methods, 1992, 156, 223-230.	1.4	42
20	A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress. Cellular and Molecular Bioengineering, 2016, 9, 127-138.	2.1	41
21	Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell, 2022, 29, 593-609.e7.	11.1	32
22	A membrane-based displacement flow immunoassay. Biosensors and Bioelectronics, 1998, 13, 939-944.	10.1	30
23	Akt Suppression of TGFβ Signaling Contributes to the Maintenance of Vascular Identity in Embryonic Stem Cell-Derived Endothelial Cells. Stem Cells, 2014, 32, 177-190.	3.2	20
24	Dissociation Rate Kinetics in a Solid-Phase Flow Immunoassay. Analytical Letters, 1998, 31, 1663-1675.	1.8	16
25	Peripheral vascular effects on auscultatory blood pressure measurement. Journal of Clinical Monitoring and Computing, 1993, 9, 9-17.	0.7	15
26	PEG-Immobilized Keratin for Protein Drug Sequestration and pH-Mediated Delivery. Journal of Drug Delivery, 2016, 2016, 1-9.	2.5	13
27	Scaffold biomaterials for nano-pathophysiology. Advanced Drug Delivery Reviews, 2014, 74, 104-114.	13.7	12
28	Laminar shear stress modulates endothelial luminal surface stiffness in a tissueâ€specific manner. Microcirculation, 2018, 25, e12455.	1.8	10
29	Blood flow forces liver growth. Nature, 2018, 562, 42-43.	27.8	8
30	A perspective on myocardial contractility. Technology and Health Care, 1997, 5, 135-144.	1.2	7
31	Differentiation of intramyocardial fluid pressure from fiber stress. Technology and Health Care, 1997, 5, 145-157.	1.2	7
32	Laser scanner for 3D reconstruction of a wound's edge and topology. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1761-1773.	2.8	6
33	New Dimensions in Vascular Engineering: Opportunities for Cancer Biology. Tissue Engineering - Part A, 2010, 16, 2157-2159.	3.1	3
34	Tracking of Endothelial Cell Migration and Stiffness Measurements Reveal the Role of Cytoskeletal Dynamics. International Journal of Molecular Sciences, 2022, 23, 568.	4.1	3
35	A Brief Assessment of Myocardial Viability in Surgically Remodeled Hearts. Cardiovascular Engineering (Dordrecht, Netherlands), 2001, 1, 155-161.	1.0	2
36	Mechanosensory Pathways in Angiocrine Mediated Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2013, , 19-45.	1.0	2

#	Article	IF	CITATIONS
37	Compressive strengths of PEG gels with glycerol and bioglass particles. Journal of Materials Research, 2019, 34, 1341-1352.	2.6	2
38	Morphological characterization of Etv2 vascular explants using fractal analysis and atomic force microscopy. Microvascular Research, 2021, 138, 104205.	2.5	1