
Mingxing Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12117919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revealing the role of mo doping in promoting oxygen reduction reaction performance of Pt3Co nanowires. Journal of Energy Chemistry, 2022, 66, 16-23.	12.9	36
2	Coupling isolated Ni single atoms with sub-10 nm Pd nanocrystals embedded in porous carbon frameworks to boost oxygen electrocatalysis for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 6086-6095.	10.3	9
3	3D Spatial Combination of CN Vacancyâ€Mediated NiFeâ€PBA with Nâ€Doped Carbon Nanofibers Network Toward Freeâ€Standing Bifunctional Electrode for Zn–Air Batteries. Advanced Science, 2022, 9, e2105925.	11.2	40
4	Kinetically Accelerated Lithium Storage in Highâ€Entropy (LiMgCoNiCuZn)O Enabled By Oxygen Vacancies. Small, 2022, 18, e2200524.	10.0	37
5	Electron Tomography Reveals Porosity Degradation Spatially on Individual Pt-Based Nanocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 25366-25373.	8.0	0
6	Engineering Location and Supports of Atomically Ordered <i>L1₀</i> â€₽dFe Intermetallics for Ultraâ€Anticorrosion Electrocatalysis. Advanced Functional Materials, 2022, 32, .	14.9	11
7	Molybdenum-doped titanium dioxide supported low-Pt electrocatalyst for highly efficient and stable hydrogen evolution reaction. Chinese Chemical Letters, 2021, 32, 765-769.	9.0	38
8	Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 282, 119617.	20.2	80
9	Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 408, 127297.	12.7	27
10	Transforming Damage into Benefit: Corrosion Engineering Enabled Electrocatalysts for Water Splitting. Advanced Functional Materials, 2021, 31, 2009032.	14.9	70
11	In situ coupling of NiFe nanoparticles with N-doped carbon nanofibers for Zn-air batteries driven water splitting. Applied Catalysis B: Environmental, 2021, 285, 119856.	20.2	60
12	Boosting alkaline hydrogen electrooxidation on an unconventional fcc-Ru polycrystal. Journal of Energy Chemistry, 2021, 61, 15-22.	12.9	36
13	Atomic Modulation Engineering of Hexagon-Shaped CeO ₂ Nanocrystals by <i>In Situ</i> Sculpturing of an Electron Beam. Journal of Physical Chemistry C, 2020, 124, 17006-17014.	3.1	3
14	Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. ACS Catalysis, 2020, 10, 9977-9985.	11.2	75
15	Optimizing Formic Acid Electro-oxidation Performance by Restricting the Continuous Pd Sites in Pd–Sn Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12239-12247.	6.7	20
16	Self-Optimized Ligand Effect in L1 ₂ -PtPdFe Intermetallic for Efficient and Stable Alkaline Hydrogen Oxidation Reaction. ACS Catalysis, 2020, 10, 15207-15216.	11.2	64
17	Electronic structure and oxophilicity optimization of mono-layer Pt for efficient electrocatalysis. Nano Energy, 2020, 74, 104877.	16.0	39
18	Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis. Small, 2020, 16, e2000663.	10.0	76

MINGXING GONG

#	Article	IF	CITATIONS
19	Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Applied Catalysis B: Environmental, 2020, 274, 119086.	20.2	73
20	Corrosion-assisted large-scale production of hierarchical iron rusts/Ni(OH)2 nanosheet-on-microsphere arrays for efficient electrocatalysis. Electrochimica Acta, 2020, 353, 136478.	5.2	17
21	Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Research, 2020, 13, 2365-2370.	10.4	44
22	Recent advances on metal alkoxide-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2020, 8, 10130-10149.	10.3	43
23	Hierarchical Bimetallic Ni–Co–P Microflowers with Ultrathin Nanosheet Arrays for Efficient Hydrogen Evolution Reaction over All pH Values. ACS Applied Materials & Interfaces, 2019, 11, 42233-42242.	8.0	70
24	Golden Palladium Zinc Ordered Intermetallics as Oxygen Reduction Electrocatalysts. ACS Nano, 2019, 13, 5968-5974.	14.6	83
25	One-Nanometer-Thick Pt ₃ Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catalysis, 2019, 9, 4488-4494.	11.2	126
26	Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1867-1873.	14.0	33
27	Facile self-template fabrication of hierarchical nickel-cobalt phosphide hollow nanoflowers with enhanced hydrogen generation performance. Science Bulletin, 2019, 64, 1675-1684.	9.0	43
28	Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to <i>in situ</i> XAFS characterization. Nanoscale, 2019, 11, 20301-20306.	5.6	33
29	Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catalysis, 2018, 8, 3237-3256.	11.2	245
30	Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy, 2018, 50, 70-78.	16.0	66
31	Tuning the electrocatalytic activity of Pt by structurally ordered PdFe/C for the hydrogen oxidation reaction in alkaline media. Journal of Materials Chemistry A, 2018, 6, 11346-11352.	10.3	41
32	Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2018, 12, 7866-7874.	14.6	49
33	Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. Journal of Materials Chemistry A, 2017, 5, 9867-9872.	10.3	98
34	Ethylenediamine tetramethylene phosphonic acid assisted synthesis of palladium nanocubes and their electrocatalysis of formic acid oxidation. Journal of Solid State Electrochemistry, 2017, 21, 1297-1303.	2.5	4
35	Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. Nanoscale, 2015, 7, 4894-4899.	5.6	50
36	Platinum–copper alloy nanocrystals supported on reduced graphene oxide: One-pot synthesis and electrocatalytic applications. Carbon, 2015, 91, 338-345.	10.3	20

MINGXING GONG

#	Article	IF	CITATIONS
37	Hollow and porous palladium nanocrystals: synthesis and electrocatalytic application. Journal of Materials Chemistry A, 2015, 3, 21995-21999.	10.3	31
38	Autocatalysis and Selective Oxidative Etching Induced Synthesis of Platinum–Copper Bimetallic Alloy Nanodendrites Electrocatalysts. ACS Applied Materials & Interfaces, 2014, 6, 7301-7308.	8.0	166
39	Facile synthesis and electrocatalytic application of phosphonate functionalized platinum nanodendrites. CrystEngComm, 2013, 15, 8929.	2.6	6
40	Regulated iron corrosion towards fabricating large-area self-supporting electrodes for efficient oxygen evolution reaction. Journal of Materials Chemistry A, 0, , .	10.3	14