## Hao-Tao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1211783/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF                | CITATIONS   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 1  | Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source.<br>Green Synthesis and Catalysis, 2023, 4, 41-45.                                                                             | 6.8               | 18          |
| 2  | Electrochemically mediated decarboxylative acylation of N-nitrosoanilines with α-oxocarboxylic acids.<br>Chinese Chemical Letters, 2023, 34, 107537.                                                                              | 9.0               | 30          |
| 3  | Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Research, 2022, 15, 1500-1508.                                        | 10.4              | 51          |
| 4  | Electrochemically-mediated C–H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Organic Chemistry Frontiers, 2022, 9, 781-787.                                                     | 4.5               | 22          |
| 5  | One-pot synthesis of oxoaporphines as potent antitumor agents and investigation of their mechanisms of actions. European Journal of Medicinal Chemistry, 2022, 231, 114141.                                                       | 5.5               | 6           |
| 6  | Electrochemically Mediated Direct C( <i>sp</i> <sup>3</sup> )â^'H Sulfonylation of Xanthene Derivatives.<br>Advanced Synthesis and Catalysis, 2022, 364, 726-731.                                                                 | 4.3               | 21          |
| 7  | Transition metal-free catalytic formylation of carbon dioxide and amide with novel poly(ionic) Tj ETQq1 1 0.7843                                                                                                                  | 14 rgBT /(<br>6.8 | Overlock 10 |
| 8  | Integrating Terminal CoBr <sub>n</sub> Salts into a 2D Cobalt(II) Coordination Polymer to Promote<br>the <i>β</i> â€( <i>E)â^'</i> Selective Hydroboration of Alkynes. Advanced Synthesis and Catalysis, 2022, 364,<br>1873-1878. | 4.3               | 5           |
| 9  | Trace amount of single-atom palladium-catalyzed selective hydrosilylation of allenes. Nano Research, 2022, 15, 7091-7098.                                                                                                         | 10.4              | 9           |
| 10 | A robust heterogeneous Co-MOF catalyst in azide–alkyne cycloaddition and Friedel–Crafts reactions<br>as well as hydrosilylation of alkynes. New Journal of Chemistry, 2021, 45, 872-880.                                          | 2.8               | 12          |
| 11 | Electrochemically Mediated S—N Bond Formation: Synthesis of Sulfenamides. Chinese Journal of<br>Organic Chemistry, 2021, 41, 2354.                                                                                                | 1.3               | 4           |
| 12 | Light-driven selective aerobic oxidation of (iso)quinoliniums and related heterocycles. RSC Advances, 2021, 11, 16246-16251.                                                                                                      | 3.6               | 2           |
| 13 | Electrochemical-mediated fixation of CO <sub>2</sub> : three-component synthesis of carbamate compounds from CO <sub>2</sub> , amines and <i>N</i> -alkenylsulfonamides. Green Chemistry, 2021, 23, 4328-4332.                    | 9.0               | 25          |
| 14 | Electrochemically Enabled Selenium Catalytic Synthesis of 2,1-Benzoxazoles from<br><i>o</i> -Nitrophenylacetylenes. Journal of Organic Chemistry, 2021, 86, 16121-16127.                                                          | 3.2               | 22          |
| 15 | Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts. Science China Chemistry, 2021, 64, 753-760.                                                                                           | 8.2               | 34          |
| 16 | Assembly of 5â€Aminoimidazoles via Palladium atalysed Double Isocyanide Insertion Reaction. Advanced<br>Synthesis and Catalysis, 2021, 363, 2762-2766.                                                                            | 4.3               | 15          |
| 17 | Paired Electrosynthesis of Aromatic Azo Compounds from Aryl Diazonium Salts with Pyrroles or<br>Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2752-2756.                                                                  | 4.3               | 12          |
| 18 | Synthesis and biological evaluation of novel 1,3-diphenylurea quinoxaline derivatives as potent anticancer agents. Medicinal Chemistry Research, 2021, 30, 1496-1511.                                                             | 2.4               | 2           |

HAO-TAO TANG

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by<br>High-Nuclearity {Co <sub>14</sub> } Clusters. ACS Catalysis, 2021, 11, 6944-6950.                                                   | 11.2 | 46        |
| 20 | Electrocatalytic Synthesis of gem-Bisarylthio Enamines and α-Phenylthio Ketones via a Radical Process<br>under Mild Conditions. Synlett, 2021, 32, 593-600.                                                                  | 1.8  | 1         |
| 21 | Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation. Chinese Journal of Organic Chemistry, 2021, 41, 4718.                                                          | 1.3  | 8         |
| 22 | Electrochemical Synthesis of 1-Naphthols by Intermolecular Annulation of Alkynes with 1,3-Dicarbonyl Compounds. Organic Letters, 2020, 22, 724-728.                                                                          | 4.6  | 89        |
| 23 | Electrochemical Difunctionalization of Olefines: Access to Selenomethylâ€5ubstituted Cyclic Ethers or<br>Lactones. Advanced Synthesis and Catalysis, 2020, 362, 506-511.                                                     | 4.3  | 96        |
| 24 | Electrochemical α-methoxymethylation and aminomethylation of propiophenones using methanol as a<br>green C1 source. Organic Chemistry Frontiers, 2020, 7, 2399-2404.                                                         | 4.5  | 13        |
| 25 | Porous Ligand Creates New Reaction Route: Bifunctional Single-Atom Palladium Catalyst for Selective<br>Distannylation of Terminal Alkynes. CheM, 2020, 6, 2300-2313.                                                         | 11.7 | 92        |
| 26 | Electrochemically enabled functionalization of indoles or anilines for the synthesis of<br>hexafluoroisopropoxy indole and aniline derivatives. Organic and Biomolecular Chemistry, 2020, 18,<br>3832-3837.                  | 2.8  | 16        |
| 27 | Palladium-catalyzed synthesis of 5-amino-1,2,4-oxadiazoles <i>via</i> isocyanide insertion. Organic and<br>Biomolecular Chemistry, 2020, 18, 4936-4940.                                                                      | 2.8  | 8         |
| 28 | Visibleâ€Lightâ€Promoted Selenylative Spirocyclization of Indolylâ€ynones toward the Formation of<br>3â€Selenospiroindolenine Anticancer Agents. Chemistry - an Asian Journal, 2020, 15, 1536-1539.                          | 3.3  | 52        |
| 29 | Halogen-mediated electrochemical organic synthesis. Organic and Biomolecular Chemistry, 2020, 18, 5315-5333.                                                                                                                 | 2.8  | 98        |
| 30 | Electrochemical Sulfonylation of Alkynes with Sulfonyl Hydrazides: A Metal―and Oxidantâ€Free<br>Protocol for the Synthesis of Alkynyl Sulfones. Advanced Synthesis and Catalysis, 2020, 362, 2160-2167.                      | 4.3  | 52        |
| 31 | Electrochemically enabled synthesis of sulfide imidazopyridines <i>via</i> a radical cyclization cascade. Green Chemistry, 2020, 22, 6334-6339.                                                                              | 9.0  | 117       |
| 32 | Simultaneous Construction of Câ^'Se And Câ^'S Bonds via the Visibleâ€Lightâ€Mediated Multicomponent<br>Cascade Reaction of Diselenides, Alkynes, and SO <sub>2</sub> . Chemistry - an Asian Journal, 2019, 14,<br>3264-3268. | 3.3  | 25        |
| 33 | Synthesis of imidazo[1,2- <i>c</i> ]thiazoles through Pd-catalyzed bicyclization of <i>tert</i> -butyl isonitrile with thioamides. Organic and Biomolecular Chemistry, 2019, 17, 8403-8407.                                  | 2.8  | 5         |
| 34 | Synthesis of rutaecarpine alkaloids <i>via</i> an electrochemical cross dehydrogenation coupling reaction. Green Chemistry, 2019, 21, 5517-5520.                                                                             | 9.0  | 53        |
| 35 | Metal―and Oxidantâ€free Electrosynthesis of 1,2,3â€Thiadiazoles from Element Sulfur and Nâ€tosyl<br>Hydrazones. Advanced Synthesis and Catalysis, 2019, 361, 1756-1760.                                                      | 4.3  | 52        |
| 36 | Electrochemical Dehydrogenative Coupling of Alcohols with Hydrogen Phosphoryl Compounds: A<br>Green Protocol for Pâ^'O Bond Formation. Advanced Synthesis and Catalysis, 2019, 361, 1761-1765.                               | 4.3  | 51        |

HAO-TAO TANG

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Electrochemically enabled chemoselective sulfonylation and hydrazination of indoles. Green Chemistry, 2019, 21, 3807-3811.                                                                                                          | 9.0  | 76        |
| 38 | Photoinduced Cascade Reaction of Tertiary Amines with Sulfonyl Azides: Synthesis of Amidine Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 3656-3660.                                                                    | 4.3  | 23        |
| 39 | Metal―and Catalystâ€Free Electrochemical Synthesis of Quinazolinones from Alkenes and<br>2â€Aminobenzamides. ChemElectroChem, 2019, 6, 3120-3124.                                                                                   | 3.4  | 26        |
| 40 | Porous Organic Polymer-Derived Nanopalladium Catalysts for Chemoselective Synthesis of Antitumor<br>Benzofuro[2,3- <i>b</i> ]pyrazine from 2-Bromophenol and Isonitriles. Organic Letters, 2019, 21,<br>4929-4932.                  | 4.6  | 147       |
| 41 | Direct C–H sulfenylation of quinoxalinones with thiols under visible-light-induced photocatalyst-free conditions. Green Chemistry, 2019, 21, 6241-6245.                                                                             | 9.0  | 94        |
| 42 | Electrochemically Enabled Double C–H Activation of Amides: Chemoselective Synthesis of Polycyclic<br>Isoquinolinones. Organic Letters, 2019, 21, 9841-9845.                                                                         | 4.6  | 64        |
| 43 | Xantphos Doped POPsâ€PPh <sub>3</sub> as Heterogeneous Ligand for Cobaltâ€Catalyzed Highly Regio―and Stereoselective Hydrosilylation of Alkynes. Chemistry - an Asian Journal, 2019, 14, 149-154.                                   | 3.3  | 17        |
| 44 | Constructing Mononuclear Palladium Catalysts by Precoordination/Solvothermal Polymerization:<br>Recyclable Catalyst for Regioselective Oxidative Heck Reactions. Angewandte Chemie - International<br>Edition, 2019, 58, 2448-2453. | 13.8 | 64        |
| 45 | Constructing Mononuclear Palladium Catalysts by Precoordination/Solvothermal Polymerization:<br>Recyclable Catalyst for Regioselective Oxidative Heck Reactions. Angewandte Chemie, 2019, 131,<br>2470-2475.                        | 2.0  | 7         |
| 46 | Transition-metal-free C–N and C–C formation: synthesis of benzo[4,5]imidazo[1,2- <i>a</i> ]pyridines<br>and 2-pyridones from ynones. Green Chemistry, 2018, 20, 2007-2012.                                                          | 9.0  | 38        |
| 47 | Palladium-Metalated Porous Organic Polymers as Recyclable Catalysts for the Chemioselective Synthesis of Thiazoles from Thiobenzamides and Isonitriles. Organic Letters, 2018, 20, 2494-2498.                                       | 4.6  | 45        |
| 48 | Copper-Catalyzed Decarboxylative/Click Cascade Reaction: Regioselective Assembly of 5-Selenotriazole<br>Anticancer Agents. Organic Letters, 2018, 20, 925-929.                                                                      | 4.6  | 83        |
| 49 | Porous Organic Polymer as a Heterogeneous Ligand for Highly Regio- and Stereoselective<br>Nickel-Catalyzed Hydrosilylation of Alkyne. Organic Letters, 2018, 20, 7748-7752.                                                         | 4.6  | 35        |
| 50 | Electrochemical sulfonylation of thiols with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of thiosulfonates. Green Chemistry, 2018, 20, 4428-4432.                                                     | 9.0  | 110       |
| 51 | Palladium-metalated porous organic polymers as recyclable catalysts for chemoselective decarbonylation of aldehydes. Chemical Communications, 2018, 54, 8446-8449.                                                                  | 4.1  | 41        |
| 52 | Electrochemical Synthesis of 3,5â€Disubstitutedâ€1,2,4â€ŧhiadiazoles through NH <sub>4</sub> lâ€Mediated<br>Dimerization of Thioamides. Advanced Synthesis and Catalysis, 2018, 360, 4043-4048.                                     | 4.3  | 49        |
| 53 | Photocatalytic Construction of S–S and C–S Bonds Promoted by Acridinium Salt: An Unexpected Pathway To Synthesize 1,2,4-Dithiazoles. Organic Letters, 2018, 20, 4819-4823.                                                          | 4.6  | 30        |
| 54 | Palladium/Phosphorusâ€Ðoped Porous Organic Polymer as Recyclable Chemoselective and Efficient<br>Hydrogenation Catalyst under Ambient Conditions. Advanced Synthesis and Catalysis, 2017, 359,<br>2280-2287.                        | 4.3  | 60        |

HAO-TAO TANG

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis of pyrazolo[5,1-a]isoquinolines through copper-catalyzed regioselective bicyclization of N-propargylic sulfonylhydrazones. Organic Chemistry Frontiers, 2017, 4, 1513-1516.                                                       | 4.5 | 7         |
| 56 | Synthesis of (E)-4,5-Dihydro-1H-Pyrazoles via Tandem Intermolecular Addition–Cyclization of N-Propargylic Sulfonylhydrazones. Synlett, 2017, 28, 2036-2040.                                                                                 | 1.8 | 1         |
| 57 | Silver(I)-Catalyzed Tandem Sigamatropic Rearrangement/1,3-H Shift/6ï€ Aza-electrocyclization of<br><i>N</i> Propargylic Hydrazones: A Mild Synthetic Route to 1,6-Dihydropyridazines. Journal of Organic<br>Chemistry, 2016, 81, 3936-3941. | 3.2 | 14        |
| 58 | Synthesis of 5,6-Dihydropyrazolo[5,1-a]isoquinolines through Indium(III)-Promoted Halocyclizations of N-Propargylic Sulfonylhydrazones. Organic Letters, 2016, 18, 1666-1669.                                                               | 4.6 | 16        |
| 59 | Synthesis of 5,6-Dihydropyrazolo[1,5- <i>c</i> ]quinazolines through Gold-Catalyzed Chemoselective<br>Bicyclization of <i>N</i> -Propargylic Sulfonylhydrazones. Organic Letters, 2015, 17, 326-329.                                        | 4.6 | 20        |
| 60 | Synthesis of 4-Arylidenepyrazolones by a Gold-Catalyzed Cyclization/Arylidene Group Transfer Cascade of <i>N</i> -Propioloyl Hydrazones. Journal of Organic Chemistry, 2015, 80, 9307-9313.                                                 | 3.2 | 12        |
| 61 | Base atalyzed NN Bond Cleavage of Hydrazones: Synthesis of αâ€Amino Ketones. Chemistry - an Asian<br>Journal, 2014, 9, 1278-1281.                                                                                                          | 3.3 | 12        |
| 62 | Copper(I)â€Catalyzed Stereoselective Synthesis of (1 <i>E</i> ,3 <i>E</i> )â€2―Sulfonylâ€1,3â€dienes from<br><i>N</i> â€Propargylic Sulfonohydrazones. Advanced Synthesis and Catalysis, 2013, 355, 1291-1296.                              | 4.3 | 20        |