Masaharu Ueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/121167/publications.pdf

Version: 2024-02-01

58 papers

3,817 citations

30 h-index 54 g-index

85 all docs 85 docs citations

85 times ranked 3156 citing authors

#	Article	lF	CITATIONS
1	Practical method for hydroxyl-group protection using strontium metal and readily available silyl chlorides. Chemical Communications, 2022, , .	4.1	O
2	Threeâ€Component, Oneâ€Pot Tandem Sonogashira/Suzukiâ€Miyaura Coupling Reactions for the Synthesis of a Library of Ceramideâ€Transport Protein Inhibitors Designed In Silico. Asian Journal of Organic Chemistry, 2020, 9, 267-273.	2.7	4
3	Chemoselective Ketone Synthesis by the Strontiumâ€mediated Alkylation or Arylation of <i>N</i> , <i>N</i> ,000, 9, 1660-1664.	2.7	8
4	Aerobic oxidation of alcohols using bismuth bromide as a catalyst. Tetrahedron Letters, 2019, 60, 570-573.	1.4	13
5	Natural ligand-nonmimetic inhibitors of the lipid-transfer protein CERT. Communications Chemistry, 2019, 2, .	4.5	27
6	Methoxycarbonyl Group as a Conformational Regulator for The Benzene Ring of Triphenylamines. ChemistrySelect, 2019, 4, 3799-3802.	1.5	0
7	Environmentally Benign Ritter Reaction Using Bismuth Salts as a Catalyst. European Journal of Organic Chemistry, 2019, 2019, 1796-1800.	2.4	14
8	Strontium-mediated selective protonation of unsaturated linkage of aromatic hydrocarbons and these derivatives. Tetrahedron Letters, 2018, 59, 2268-2271.	1.4	5
9	Selective Hydrogenation of Nitriles to Primary Amines Catalyzed by a Polysilane/SiO ₂ â€Supported Palladium Catalyst under Continuousâ€Flow Conditions. ChemistryOpen, 2017, 6, 211-215.	1.9	38
10	Superior Alkylating Agents for Bulky Esters/Ketones via Strontiumâ€Mediated Barbierâ€Type Reaction. Asian Journal of Organic Chemistry, 2017, 6, 821-824.	2.7	7
11	Powerful Continuousâ€Flow Hydrogenation by using Poly(dimethyl)silaneâ€Supported Palladium Catalysts. ChemCatChem, 2015, 7, 4025-4029.	3.7	44
12	Catalytic Flow Hydrogenation of Aromatic Nitro Compounds Using Polysilane-Supported Palladium. Journal of Flow Chemistry, 2014, 4, 160-163.	1.9	19
13	Catalytic Organic Reactions on the Surface of Silver(I) Oxide in Water. Chemistry Letters, 2014, 43, 1867-1869.	1.3	8
14	Allylation Reactions of Aldehydes with Allylboronates in Aqueous Media: Unique Reactivity and Selectivity that are Only Observed in the Presence of Water. Chemistry - an Asian Journal, 2013, 8, 2033-2045.	3.3	23
15	Revised Stereochemistry of Ceramide-Trafficking Inhibitor HPA-12 by X-ray Crystallography Analysis. Organic Letters, 2013, 15, 2869-2871.	4.6	31
16	A novel inhibitor of ceramide trafficking from endoplasmic reticulum to the site of sphingomyelin synthesis Journal of Biological Chemistry, 2013, 288, 24162.	3.4	4
17	Chiral Copper(II)â€Catalyzed Enantioselective Boron Conjugate Additions to α,βâ€Unsaturated Carbonyl Compounds in Water. Angewandte Chemie - International Edition, 2012, 51, 12763-12766.	13.8	155
18	Chiral-Sc catalyzed asymmetric Michael addition/protonation of thiols with enones in water. Organic and Biomolecular Chemistry, 2012, 10, 7134.	2.8	56

#	Article	lF	Citations
19	Chiral Sc-catalyzed asymmetric Michael reactions of thiols with enones in water. Organic and Biomolecular Chemistry, 2011, 9, 3619.	2.8	36
20	Chiral Zincâ€Catalyzed Asymmetric αâ€Alkylallylation and αâ€Chloroallylation of Aldehydes. Angewandte Chemie - International Edition, 2011, 50, 12262-12265.	13.8	57
21	Bismuth Catalysts in Aqueous Media. Topics in Current Chemistry, 2011, 311, 1-17.	4.0	15
22	Silver Oxide as a Novel Catalyst for Carbon–Carbon Bond-forming Reactions in Aqueous Media. Chemistry Letters, 2010, 39, 652-653.	1.3	10
23	Copper(II) and Bismuth(III) Hydroxide Catalyzed Addition Reactions of Hydrazonoester with Allenylboronate in Aqueous Media. Synlett, 2010, 2010, 2033-2036.	1.8	23
24	Aldehyde allylation with allylboronates providing $\hat{\textbf{l}}_{\pm}\text{-addition}$ products. Chemical Communications, 2010, 46, 1260.	4.1	33
25	A Gold″mmobilized Microchannel Flow Reactor for Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie - International Edition, 2009, 48, 4744-4746.	13.8	102
26	Immobilization of Ruthenium in Organic–Inorganic Hybrid Copolymers: A Reusable Heterogeneous Catalyst for Oxidation of Alcohols with Molecular Oxygen. Chemistry - an Asian Journal, 2008, 3, 239-243.	3.3	31
27	Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols. Chemistry - an Asian Journal, 2008, 3, 196-214.	3.3	279
28	Development of microchannel reactors using polysilane-supported palladium catalytic systems in capillaries. Chemical Communications, 2008, , 1647.	4.1	48
29	Catalytic Use of Indium(0) for Carbonâ^Carbon Bond Transformations in Water: General Catalytic Allylations of Ketones with Allylboronates. Journal of the American Chemical Society, 2008, 130, 13824-13825.	13.7	97
30	Polymer-Incarcerated Palladium with Active Phosphine as Recoverable and Reusable Pd Catalyst for the Amination of Aryl Chlorides. Synlett, 2007, 2007, 3209-3213.	1.8	4
31	Storable, powdered chiral zirconium complex for asymmetric aldol and hetero Diels–Alder reactions. Organic and Biomolecular Chemistry, 2007, 5, 1347-1350.	2.8	16
32	Polymer Incarcerated Ruthenium Catalyst for Oxidation of Alcohols with Molecular Oxygen. Advanced Synthesis and Catalysis, 2007, 349, 531-534.	4.3	48
33	An air-stable chiral Hf-based catalyst for asymmetric Mannich-type reactions. Tetrahedron, 2007, 63, 8425-8429.	1.9	18
34	Toward the Total Synthesis of Onchidin, a Cytotoxic Cyclic Depsipeptide from a Mollusc. Chemistry - an Asian Journal, 2007, 2, 135-144.	3.3	22
35	Supercooled micro flows and application for asymmetric synthesis. Lab on A Chip, 2006, 6, 1236.	6.0	20
36	Instantaneous Carbonâ^'Carbon Bond Formation Using a Microchannel Reactor with a Catalytic Membrane. Journal of the American Chemical Society, 2006, 128, 15994-15995.	13.7	154

#	Article	IF	CITATIONS
37	Continuous-Flow Chemical Processing in Three-Dimensional Microchannel Network for On-Chip Integration of Multiple Reactions in a Combinatorial Mode. QSAR and Combinatorial Science, 2005, 24, 742-757.	1.4	16
38	Catalytic Enantioselective Mannich Reactions. , 2005, , 139-157.		6
39	Surface Modification Method of Microchannels for Gasâ^'Liquid Two-Phase Flow in Microchips. Analytical Chemistry, 2005, 77, 943-947.	6.5	144
40	A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions. Science, 2004, 304, 1305-1308.	12.6	545
41	Asymmetric Catalysis Special Feature Part I: Air-stable, storable, and highly efficient chiral zirconium catalysts for enantioselective Mannich-type, aza Diels-Alder, aldol, and hetero Diels-Alder reactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5476-5481.	7.1	76
42	Catalytic Asymmetric Mannich-Type Reactions Using a Novel Chiral Iron Complex ChemInform, 2003, 34, no.	0.0	0
43	Air-Stable, Storable, and Highly Selective Chiral Lewis Acid Catalyst ChemInform, 2003, 34, no.	0.0	0
44	Phase-Transfer Alkylation Reactions Using Microreactors ChemInform, 2003, 34, no.	0.0	0
45	An Air-Stable, Storable Chiral Zirconium Catalyst for Asymmetric Aldol Reactions ChemInform, 2003, 34, no.	0.0	0
46	An air-stable, storable chiral zirconium catalyst for asymmetric aldol reactions. Chemical Communications, 2003, , 2016.	4.1	14
47	Phase-transfer alkylation reactions using microreactors. Chemical Communications, 2003, , 936-937.	4.1	121
48	Air-Stable, Storable, and Highly Selective Chiral Lewis Acid Catalyst. Organic Letters, 2002, 4, 3395-3397.	4.6	46
49	Catalytic Enantioselective Addition of Propionate Units to Imines: An Efficient Synthesis of antiMethylAmino Acid Derivatives. Chemistry - A European Journal, 2002, 8, 4185-4190.	3.3	49
50	Catalytic Asymmetric Mannich-Type Reactions Using a Novel Chiral Iron Complex. Advanced Synthesis and Catalysis, 2002, 344, 929-931.	4.3	32
51	Catalytic enantioselective synthesis of a novel inhibitor of ceramide trafficking, (1 R ,3 R)- N -(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (HPA-12). Tetrahedron Letters, 2001, 42, 7863-7865.	1.4	38
52	A novel chiral zirconium catalyst for enantioselective aldol and Mannich-type reactions. Catalytic activation of both aldehydes and imines using a similar chiral Lewis acid. Tetrahedron, 2001, 57, 861-866.	1.9	44
53	A Novel Inhibitor of Ceramide Trafficking from the Endoplasmic Reticulum to the Site of Sphingomyelin Synthesis. Journal of Biological Chemistry, 2001, 276, 43994-44002.	3.4	126
54	Enantioselective Mannich-Type Reactions Using a Novel Chiral Zirconium Catalyst for the Synthesis of Optically Active \hat{l}^2 -Amino Acid Derivatives. Journal of the American Chemical Society, 2000, 122, 8180-8186.	13.7	225

#	Article	IF	CITATION
55	Catalytic asymmetric synthesis of febrifugine and isofebrifugine. Tetrahedron Letters, 1999, 40, 2175-2178.	1.4	119
56	Catalytic Asymmetric Synthesis of Antimalarial Alkaloids Febrifugine and Isofebrifugine and Their Biological Activity. Journal of Organic Chemistry, 1999, 64, 6833-6841.	3.2	130
57	Catalytic Asymmetric Synthesis of Both Syn- and Anti- \hat{l}^2 -Amino Alcohols. Journal of the American Chemical Society, 1998, 120, 431-432.	13.7	247
58	Catalytic Enantioselective Mannich-Type Reactions Using a Novel Chiral Zirconium Catalyst. Journal of the American Chemical Society, 1997, 119, 7153-7154.	13.7	274