
Jonathan P Staley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12116196/publications.pdf Version: 2024-02-01

ΙΟΝΑΤΗΛΝ Ρ ΥΤΛΙ ΕΥ

#	Article	IF	CITATIONS
1	Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6. Genes and Development, 2019, 33, 1555-1574.	2.7	17
2	Structure of the DEAH/RHA ATPase Prp43p bound to RNA implicates a pair of hairpins and motif Va in translocation along RNA. Rna, 2017, 23, 1110-1124.	1.6	39
3	Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget, 2016, 7, 26496-26515.	0.8	141
4	Specific Recognition of a Single-Stranded RNA Sequence by a Synthetic Antibody Fragment. Journal of Molecular Biology, 2016, 428, 4100-4114.	2.0	11
5	Evolutionarily Conserved Polyadenosine RNA Binding Protein Nab2 Cooperates with Splicing Machinery To Regulate the Fate of Pre-mRNA. Molecular and Cellular Biology, 2016, 36, 2697-2714.	1.1	50
6	Reverse transcriptases lend a hand in splicing catalysis. Nature Structural and Molecular Biology, 2016, 23, 507-509.	3.6	18
7	Sequencing of lariat termini in <i>S. cerevisiae</i> reveals 5′ splice sites, branch points, and novel splicing events. Rna, 2016, 22, 237-253.	1.6	33
8	Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites. Cell, 2016, 164, 985-998.	13.5	133
9	Knocking Down <i>Snrnp200</i> Initiates Demorphogenesis of Rod Photoreceptors in Zebrafish. Journal of Ophthalmology, 2015, 2015, 1-7.	0.6	5
10	The DExD/H-box ATPase Prp2p destabilizes and proofreads the catalytic RNA core of the spliceosome. Rna, 2014, 20, 282-294.	1.6	37
11	Evidence for a group II intron–like catalytic triplex in the spliceosome. Nature Structural and Molecular Biology, 2014, 21, 464-471.	3.6	97
12	Synthesis and Incorporation of the Phosphoramidite Derivative of 2′- <i>O</i> -Photocaged 3′- <i>S</i> -Thioguanosine into Oligoribonucleotides: Substrate for Probing the Mechanism of RNA Catalysis. Journal of Organic Chemistry, 2014, 79, 3647-3652.	1.7	7
13	RNA catalyses nuclear pre-mRNA splicing. Nature, 2013, 503, 229-234.	13.7	289
14	Intronic sequence elements impede exon ligation and trigger a discard pathway that yields functional telomerase RNA in fission yeast. Genes and Development, 2013, 27, 627-638.	2.7	26
15	Splicing fidelity. RNA Biology, 2013, 10, 1073-1079.	1.5	45
16	A conformational switch in PRP8 mediates metal ion coordination that promotes pre-mRNA exon ligation. Nature Structural and Molecular Biology, 2013, 20, 728-734.	3.6	36
17	Spliceosome activation: U4 is the path, stem I is the goal, and Prp8 is the keeper. Let's cheer for the ATPase Brr2!. Genes and Development, 2012, 26, 2461-2467.	2.7	9
18	Staying on message: ensuring fidelity in pre-mRNA splicing. Trends in Biochemical Sciences, 2012, 37, 263-273.	3.7	104

JONATHAN P STALEY

#	Article	IF	CITATIONS
19	Spliceosome discards intermediates via the DEAH box ATPase Prp43p. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10020-10025.	3.3	80
20	The DEAH Box ATPases Prp16 and Prp43 Cooperate to Proofread 5′ Splice Site Cleavage during Pre-mRNA Splicing. Molecular Cell, 2010, 39, 385-395.	4.5	104
21	Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. Rna, 2009, 15, 1386-1397.	1.6	72
22	Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Current Opinion in Cell Biology, 2009, 21, 109-118.	2.6	128
23	Autosomal-Dominant Retinitis Pigmentosa Caused by a Mutation in SNRNP200, a Gene Required for Unwinding of U4/U6 snRNAs. American Journal of Human Genetics, 2009, 85, 617-627.	2.6	141
24	A role for ubiquitin in the spliceosome assembly pathway. Nature Structural and Molecular Biology, 2008, 15, 444-451.	3.6	107
25	U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing. Genes and Development, 2007, 21, 821-834.	2.7	100
26	The EF-G-like GTPase Snu114p Regulates Spliceosome Dynamics Mediated by Brr2p, a DExD/H Box ATPase. Molecular Cell, 2006, 23, 389-399.	4.5	163
27	Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nature Structural and Molecular Biology, 2006, 13, 482-490.	3.6	154
28	DEAD on. Nature Structural and Molecular Biology, 2006, 13, 954-955.	3.6	5
29	The Splicing Factor Prp43p, a DEAH Box ATPase, Functions in Ribosome Biogenesis. Molecular and Cellular Biology, 2006, 26, 513-522.	1.1	96
30	Multiple functions for the invariant AGC triad of U6 snRNA. Rna, 2004, 10, 921-928.	1.6	61
31	Hanging on to the branch. Nature Structural Biology, 2002, 9, 5-7.	9.7	3
32	Specific Alterations of U1-C Protein or U1 Small Nuclear RNA Can Eliminate the Requirement of Prp28p, an Essential DEAD Box Splicing Factor. Molecular Cell, 2001, 7, 227-232.	4.5	179
33	An RNA Switch at the 5′ Splice Site Requires ATP and the DEAD Box Protein Prp28p. Molecular Cell, 1999, 3, 55-64.	4.5	279
34	Mechanical Devices of the Spliceosome: Motors, Clocks, Springs, and Things. Cell, 1998, 92, 315-326.	13.5	1,024
35	Formation of a nativeâ€like subdomain in a partially folded intermediate of bovine pancreatic trypsin inhibitor. Protein Science, 1994, 3, 1822-1832.	3.1	126
36	Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor. Nature, 1990, 344, 685-688.	13.7	108