Wojciech Danysz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12114977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system - too little activation is bad, too much is even worse. Neuropharmacology, 2007, 53, 699-723.	4.1	593
2	Alzheimer's disease, βâ€ a myloid, glutamate, NMDA receptors and memantine – searching for the connections. British Journal of Pharmacology, 2012, 167, 324-352.	5.4	396
3	The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence. International Journal of Geriatric Psychiatry, 2003, 18, S23-S32.	2.7	327
4	Memantine and Cholinesterase Inhibitors: Complementary Mechanisms in the Treatment of Alzheimer's Disease. Neurotoxicity Research, 2013, 24, 358-369.	2.7	246
5	Neuroprotective and symptomatological action of memantine relevant for alzheimer's disease — a unified glutamatergic hypothesis on the mechanism of action. Neurotoxicity Research, 2000, 2, 85-97.	2.7	211
6	Modulation of l-DOPA-induced abnormal involuntary movements by clinically tested compounds: Further validation of the rat dyskinesia model. Behavioural Brain Research, 2007, 179, 76-89.	2.2	203
7	Antagonism of metabotropic glutamate receptor type 5 attenuates I-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson?s disease. Journal of Neurochemistry, 2007, 101, 483-497.	3.9	194
8	Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacology Biochemistry and Behavior, 1994, 48, 111-118.	2.9	169
9	Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology, 2002, 42, 1024-1030.	4.1	164
10	Pharmacological Modulation of Glutamate Transmission in a Rat Model of I-DOPA-Induced Dyskinesia: Effects on Motor Behavior and Striatal Nuclear Signaling. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 227-235.	2.5	160
11	Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Research, 1989, 479, 270-276.	2.2	158
12	Potential Antidepressive Properties of Amantadine, Memantine and Bifemelane. Basic and Clinical Pharmacology and Toxicology, 1993, 72, 394-397.	0.0	142
13	A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiology of Disease, 2010, 39, 352-361.	4.4	142
14	Effects of the Uncompetitive NMDA Receptor Antagonist Memantine on Hippocampal Long-term Potentiation, Short-term Exploratory Modulation and Spatial Memory in Awake, Freely Moving Rats. European Journal of Neuroscience, 1996, 8, 565-571.	2.6	134
15	Amino-alkyl-cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage-dependency and fast blocking kinetics: in vitro and in vivo characterization. Neuropharmacology, 1999, 38, 85-108.	4.1	130
16	Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson's disease. Brain Research Bulletin, 2006, 69, 318-326.	3.0	119
17	Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behavioural Pharmacology, 2006, 17, 411-424.	1.7	118
18	Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane. Pharmacology Biochemistry and Behavior, 2006, 85, 298-306.	2.9	116

WOJCIECH DANYSZ

#	Article	IF	CITATIONS
19	Infusion of (+)-MK-801 and memantine — contrasting effects on radial maze learning in rats with entorhinal cortex lesion. European Journal of Pharmacology, 1996, 296, 239-246.	3.5	103
20	MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1995, 293, 267-270.	0.8	90
21	Learning deficits induced by chronic intraventricular infusion of quinolinic acid — protection by MK-801 and memantine. European Journal of Pharmacology, 1996, 296, 1-8.	3.5	88
22	No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life Sciences, 2000, 66, 1079-1083.	4.3	77
23	Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behavioural Brain Research, 1997, 83, 129-133.	2.2	75
24	Brain penetration and in vivo recovery of NMDA receptor antagonists amantadine and memantine: a quantitative microdialysis study. Pharmaceutical Research, 1999, 16, 637-642.	3.5	67
25	The anxiolytic and analgesic properties of fenobam, a potent mGlu5 receptor antagonist, in relation to the impairment of learning. Neuropharmacology, 2009, 57, 97-108.	4.1	59
26	Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat. Brain Research, 1994, 655, 7-11.	2.2	52
27	Effects of a positive allosteric modulator of mGluR5 ADX47273 on conditioned avoidance response and PCP-induced hyperlocomotion in the rat as models for schizophrenia. Pharmacology Biochemistry and Behavior, 2010, 95, 23-30.	2.9	52
28	Behavioral characterization of GLT1 (+/-) mice as a model of mild glutamatergic hyperfunction. Neurotoxicity Research, 2008, 13, 19-30.	2.7	51
29	The effects of mitochondrial failure upon cholinergic toxicity in the nucleus basalis. NeuroReport, 1996, 7, 1453-1456.	1.2	49
30	Effect of glutamate receptor antagonists on N-methyl-D-aspartate- and (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced convulsant effects in mice and rats. European Journal of Pharmacology, 1993, 242, 213-220.	3.5	45
31	Behavioural and cellular effects of exogenous amyloid-l ² peptides in rodents. Behavioural Brain Research, 2011, 225, 623-641.	2.2	45
32	Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. Journal of Neural Transmission, 2008, 115, 1609-1619.	2.8	38
33	Amantadine: reappraisal of the timeless diamond—target updates and novel therapeutic potentials. Journal of Neural Transmission, 2021, 128, 127-169.	2.8	33
34	Therapeutically relevant plasma concentrations of memantine produce significant L-N-methyl-D-aspartate receptor occupation and do not impair learning in rats. Behavioural Pharmacology, 2008, 19, 724-734.	1.7	29
35	Enhancement of Antidepressant-Like Effects but Not Brain-Derived Neurotrophic Factor mRNA Expression by the Novel N-Methyl-d-aspartate Receptor Antagonist Neramexane in Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1128-1136.	2.5	27
36	Pharmacological characterization of MRZ-8676, a novel negative allosteric modulator of subtype 5 metabotropic glutamate receptors (mGluR5): focus on l-DOPA-induced dyskinesia. Journal of Neural Transmission, 2011, 118, 1703-1716.	2.8	25

#	Article	IF	CITATIONS
37	Behavioural evaluation of long-term neurotoxic effects of NMDA receptor antagonists. Neurotoxicity Research, 1999, 1, 299-310.	2.7	17
38	Effects of glutamate and α2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicology and Applied Pharmacology, 2009, 240, 198-207.	2.8	15
39	A novel procedure for assessing the effects of drugs on satiation in baboons: effects of memantine and dexfenfluramine. Psychopharmacology, 2008, 199, 583-592.	3.1	10
40	Effects of dopamine uptake inhibitor MRZ-9547 in animal models of Parkinson's disease. Journal of Neural Transmission, 2015, 122, 809-818.	2.8	4