Shivakumar Raman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12114600/publications.pdf

Version: 2024-02-01

623734 580821 32 614 14 25 citations g-index h-index papers 33 33 33 321 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the selection of flatness measurement points in coordinate measuring machine inspection. International Journal of Machine Tools and Manufacture, 2000, 40, 427-443.	13.4	86
2	An intelligent sampling method for inspecting free-form surfaces. International Journal of Advanced Manufacturing Technology, 2009, 40, 1125-1136.	3.0	85
3	Intelligent Search-Based Selection of Sample Points for Straightness and Flatness Estimation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125, 263-271.	2.2	49
4	Experimental verification of manufacturing error pattern and its utilization in form tolerance sampling. International Journal of Machine Tools and Manufacture, 2005, 45, 63-73.	13.4	47
5	Machine vision assisted characterization of machined surfaces. International Journal of Production Research, 2001, 39, 759-784.	7.5	40
6	Texture analysis using computer vision. Computers in Industry, 1991, 16, 25-34.	9.9	39
7	Observations of the tool–chip boundary conditions in turning of aluminum alloys. Wear, 2007, 262, 889-904.	3.1	37
8	Support Vector Regression for Determination of Minimum Zone. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2003, 125, 736-739.	2.2	25
9	Observations in the flat lapping of stainless steel and bronze. Wear, 2008, 265, 105-116.	3.1	24
10	An analytical model for optimization of NC tool cutting path. International Journal of Production Research, 1992, 30, 109-127.	7.5	21
11	Inspection of the cylindrical surface feature after turning using coordinate metrology. International Journal of Machine Tools and Manufacture, 2007, 47, 1893-1903.	13.4	21
12	METEXâ€"An expert system for machining planning. International Journal of Production Research, 1992, 30, 1501-1516.	7.5	20
13	Experimental Analysis of Search-Based Selection of Sample Points for Straightness and Flatness Estimation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2005, 127, 96-103.	2.2	19
14	Framework for Cone Feature Measurement Using Coordinate Measuring Machines. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2004, 126, 169-177.	2.2	17
15	Basic observations in the flat lapping of aluminum and steels using standard abrasives. International Journal of Advanced Manufacturing Technology, 2009, 44, 293-305.	3.0	12
16	A fractal view of tool–chip interfacial friction in machining. Wear, 2002, 253, 1111-1120.	3.1	11
17	Support vector regression for determining the minimum zone sphericity. International Journal of Advanced Manufacturing Technology, 2008, 35, 916-923.	3.0	11
18	Torus Form Inspection Using Coordinate Sampling. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2005, 127, 84-95.	2.2	9

#	Article	IF	CITATIONS
19	Optimal NC path planning: is it really possible?. Computers and Industrial Engineering, 1990, 19, 462-464.	6.3	7
20	Process-guided coordinate sampling of end-milled flat plates. International Journal of Advanced Manufacturing Technology, 2011, 53, 979-991.	3.0	6
21	The effect of tool life and other process variables in NC path planning. Computers and Industrial Engineering, 1993, 24, 315-328.	6.3	4
22	Mathematical Foundations for Form Inspection and Adaptive Sampling. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 131, .	2.2	4
23	A framework for knowledge representation and interpretation of industrial objects. Journal of Manufacturing Systems, 1992, 11, 93-101.	13.9	2
24	Clinical Assessment of Electromagnetic Compatibility of Hearing Aids and Digital Wireless Phones. Proceedings of the Human Factors and Ergonomics Society, 1998, 42, 1023-1027.	0.3	2
25	Origin offset and axes misalignment compensation in complex form parameter estimation using CMM. International Journal of Advanced Manufacturing Technology, 2013, 68, 2771-2790.	3.0	2
26	OMNE-Vision â€"Object measurement in a noisy environment using vision. Computers in Industry, 1995, 27, 23-32.	9.9	1
27	An integrated approach for the estimation of spherical form tolerance. Journal of Manufacturing Systems, 2006, 25, 172-183.	13.9	1
28	Mathematical framework for form inspection. International Journal of Advanced Manufacturing Technology, 2011, 52, 637-649.	3.0	1
29	Coordinate metrology for adaptive form verification. Manufacturing Letters, 2013, 1, 59-61.	2.2	1
30	Wireless Telephone-Hearing Aid Electromagnetic Compatibility Research at the University of Oklahoma. Journal of the American Academy of Audiology, 2001, 12, 301-308.	0.7	1
31	Manufacturing Processes., 2007,, 195-209.		0
32	Mathematical tolerance verification of N-sided prisms using Fourier analysis. International Journal of Advanced Manufacturing Technology, 2008, 36, 114-131.	3.0	0