Alexander Southan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1211362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Advanced â€~clickECM' That Can be Modified by the Inverseâ€Electronâ€Demand Dielsâ€Alder Reaction. ChemBioChem, 2022, 23, .	1.3	5
2	Multi-axis 3D printing of gelatin methacryloyl hydrogels on a non-planar surface obtained from magnetic resonance imaging. Additive Manufacturing, 2022, 50, 102566.	1.7	10
3	Evaluation of novel biomaterials for cartilage regeneration based on gelatin methacryloyl interpenetrated with extractive chondroitin sulfate or unsulfated biotechnological chondroitin. Journal of Biomedical Materials Research - Part A, 2022, 110, 1210-1223.	2.1	22
4	Cellâ€derived and enzymeâ€based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnology and Bioengineering, 2022, 119, 1142-1156.	1.7	9
5	Photo-crosslinking and surface-attachment of polyvinyl alcohol nanocoatings by C,H insertion to customize their swelling behavior and stability in polar media. Polymer Chemistry, 2022, 13, 4273-4283.	1.9	5
6	Azidoâ€functionalized gelatin via direct conversion of lysine amino groups by diazo transfer as a building block for biofunctional hydrogels. Journal of Biomedical Materials Research - Part A, 2021, 109, 77-91.	2.1	1
7	Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. Scientific Reports, 2021, 11, 3256.	1.6	44
8	Tailoring and visualising pore openings in gelatin-based hydrogel foams. Journal of Colloid and Interface Science, 2021, 588, 326-335.	5.0	5
9	Gelatin-Based Foamed and Non-foamed Hydrogels for Sorption and Controlled Release of Metoprolol. ACS Applied Polymer Materials, 2021, 3, 5674-5682.	2.0	4
10	Coumarinâ€4â€ylmethyl―andpâ€Hydroxyphenacylâ€Based Photoacid Generators with High Solubility in Aqueous Media: Synthesis, Stability and Photolysis. ChemPhotoChem, 2020, 4, 207-217.	1.5	3
11	Eclectic characterisation of chemically modified cell-derived matrices obtained by metabolic glycoengineering and re-assessment of commonly used methods. RSC Advances, 2020, 10, 35273-35286.	1.7	3
12	Precision 3Dâ€Printed Cell Scaffolds Mimicking Native Tissue Composition and Mechanics. Advanced Healthcare Materials, 2020, 9, e2000918.	3.9	29
13	Structure–property relations of amphiphilic poly(furfuryl glycidyl ether)- <i>block</i> -poly(ethylene) Tj ETQq1 1	0.784314 1.9	rgBT /Over
14	Azide-Functional Extracellular Matrix Coatings as a Bioactive Platform for Bioconjugation. ACS Applied Materials & Interfaces, 2020, 12, 26868-26879.	4.0	9
15	High Precision 3D Bioâ€printing: Precision 3Dâ€Printed Cell Scaffolds Mimicking Native Tissue Composition and Mechanics (Adv. Healthcare Mater. 24/2020). Advanced Healthcare Materials, 2020, 9, 2070087.	3.9	0
16	Hydrogels with multiple clickable anchor points: synthesis and characterization of poly(furfuryl) Tj ETQq0 0 0 rgB 4485-4494.	T /Overloc 1.9	k 10 Tf 50 1 5
17	Physical Interactions Strengthen Chemical Gelatin Methacryloyl Gels. Gels, 2019, 5, 4.	2.1	30
18	Highly Ordered Gelatin Methacryloyl Hydrogel Foams with Tunable Pore Size. Biomacromolecules,	26	33

2019, 20, 2666-2674.

2.6

ALEXANDER SOUTHAN

#	Article	IF	CITATIONS
19	Hydrophobization of Tobacco Mosaic Virus to Control the Mineralization of Organic Templates. Nanomaterials, 2019, 9, 800.	1.9	5
20	Expanding the Range of Available Isoelectric Points of Highly Methacryloylated Gelatin. Macromolecular Chemistry and Physics, 2019, 220, 1900097.	1.1	3
21	Generation of an azide-modified extracellular matrix by adipose-derived stem cells using metabolic glycoengineering. Current Directions in Biomedical Engineering, 2019, 5, 393-395.	0.2	7
22	Plant virus-based materials for biomedical applications: Trends and prospects. Advanced Drug Delivery Reviews, 2019, 145, 96-118.	6.6	66
23	Covalent incorporation of tobacco mosaic virus increases the stiffness of poly(ethylene glycol) diacrylate hydrogels. RSC Advances, 2018, 8, 4686-4694.	1.7	9
24	Quantification of Substitution of Gelatin Methacryloyl: Best Practice and Current Pitfalls. Biomacromolecules, 2018, 19, 42-52.	2.6	93
25	Triazole-based cross-linkers in radical polymerization processes: tuning mechanical properties of poly(acrylamide) and poly(<i>N,N</i> -dimethylacrylamide) hydrogels. RSC Advances, 2018, 8, 34743-34753.	1.7	3
26	Biofunktionale Tinten mit einstellbaren Eigenschaften für Bioprinting und additive Fertigungsverfahren. Chemie-Ingenieur-Technik, 2018, 90, 1195-1196.	0.4	0
27	Beyond the Modification Degree: Impact of Raw Material on Physicochemical Properties of Gelatin Type A and Type B Methacryloyls. Macromolecular Bioscience, 2018, 18, e1800168.	2.1	39
28	Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups. Gels, 2018, 4, 69.	2.1	20
29	Photoinduced Cleavage and Hydrolysis of <i>o</i> â€Nitrobenzyl Linker and Covalent Linker Immobilization in Gelatin Methacryloyl Hydrogels. Macromolecular Bioscience, 2018, 18, e1800104.	2.1	16
30	Active Ester Containing Surfmer for One-Stage Polymer Nanoparticle Surface Functionalization in Mini-Emulsion Polymerization. Polymers, 2018, 10, 408.	2.0	6
31	Interactions of methacryloylated gelatin and heparin modulate physico-chemical properties of hydrogels and release of vascular endothelial growth factor. Biomedical Materials (Bristol), 2018, 13, 055008.	1.7	13
32	Physically and chemically gelling hydrogel formulations based on poly(ethylene glycol) diacrylate and Poloxamer 407. Polymer, 2017, 108, 21-28.	1.8	16
33	Influence of shear thinning and material flow on robotic dispensing of poly(ethylene glycol) diacrylate/poloxamer 407 hydrogels. Journal of Applied Polymer Science, 2017, 134, 45083.	1.3	23
34	Impact of intermediate UV curing and yield stress of 3D printed poly(ethylene glycol) diacrylate hydrogels on interlayer connectivity and maximum build height. Additive Manufacturing, 2017, 18, 136-144.	1.7	16
35	Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR. Journal of Chemical Physics, 2017, 146, 225101.	1.2	23
36	Silicon Integrated Dual-Mode Interferometer with Differential Outputs. Biosensors, 2017, 7, 37.	2.3	8

ALEXANDER SOUTHAN

#	Article	IF	CITATIONS
37	Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels. Materials, 2016, 9, 810.	1.3	14
38	Gelatin methacrylamide as coating material in cell culture. Biointerphases, 2016, 11, 021007.	0.6	9
39	Synthesis of Pyridine Acrylates and Acrylamides and Their Corresponding Pyridinium Ions as Versatile Cross-Linkers for Tunable Hydrogels. Synthesis, 2014, 46, 1243-1253.	1.2	8
40	Side chain thiol-functionalized poly(ethylene glycol) by post-polymerization modification of hydroxyl groups: synthesis, crosslinking and inkjet printing. Polymer Chemistry, 2014, 5, 5350-5359.	1.9	20
41	Toward Controlling the Formation, Degradation Behavior, and Properties of Hydrogels Synthesized by Azaâ€Michael Reactions. Macromolecular Chemistry and Physics, 2013, 214, 1865-1873.	1.1	18
42	Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels. Scientific Reports, 2013, 3, 2043.	1.6	13
43	Optimisation of two-photon induced cleavage of molecular linker systems for drug delivery. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 188-192.	2.0	14
44	Acid catalyzed crossâ€ l inking of polyvinyl alcohol for humidifier membranes. Journal of Applied Polymer Science, 0, , 51606.	1.3	7
45	New Gelatinâ€Based Hydrogel Foams for Improved Substrate Conversion of Immobilized Horseradish Peroxidase. Macromolecular Bioscience, 0, , 2200139.	2.1	1