Hangyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12113519/publications.pdf Version: 2024-02-01

ΗλΝΟΥΠ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Fabrication of High-Surface-Area Graphene/Polyaniline Nanocomposites and Their Application in Supercapacitors. ACS Applied Materials & amp; Interfaces, 2013, 5, 2685-2691.	8.0	309
2	Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nature Communications, 2015, 6, 6127.	12.8	201
3	Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon, 2014, 71, 257-267.	10.3	171
4	Novel Pyrolyzed Polyaniline-Grafted Silicon Nanoparticles Encapsulated in Graphene Sheets As Li-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2014, 6, 5996-6002.	8.0	114
5	Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5105-5110.	7.1	105
6	Temperature and pH effects on biophysical and morphological properties of selfâ€assembling peptide RADA16â€I. Journal of Peptide Science, 2008, 14, 152-162.	1.4	103
7	An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black. Biosensors and Bioelectronics, 2012, 38, 314-320.	10.1	74
8	Investigation of a Catalyst Ink Dispersion Using Both Ultra-Small-Angle X-ray Scattering and Cryogenic TEM. Langmuir, 2010, 26, 19199-19208.	3.5	62
9	Preparation of high-surface-area carbon nanoparticle/graphene composites. Carbon, 2012, 50, 3845-3853.	10.3	57
10	Functionalized graphene oxide for the fabrication of paraoxon biosensors. Analytica Chimica Acta, 2014, 827, 86-94.	5.4	51
11	Hierarchical polybenzimidazole-grafted graphene hybrids as supports for Pt nanoparticle catalysts with excellent PEMFC performance. Nano Energy, 2015, 16, 281-292.	16.0	50
12	Hierarchical Nanocomposites of Vanadium Oxide Thin Film Anchored on Graphene as High-Performance Cathodes in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 18894-18900.	8.0	46
13	CeO2–MO x (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity. Journal of Materials Science, 2015, 50, 3750-3762.	3.7	40
14	Facile Preparation of Graphene/SnO ₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27087-27095.	8.0	36
15	InÂVitro Study of α-Synuclein Protofibrils by Cryo-EM Suggests aÂCu2+-Dependent Aggregation Pathway. Biophysical Journal, 2013, 104, 2706-2713.	0.5	35
16	Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Acta Biomaterialia, 2017, 55, 183-193.	8.3	32
17	Mechanistic Study of Self-Assembling Peptide RADA16-I in Formation of Nanofibers and Hydrogels. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	16
18	Core-shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2143-2153.	3.3	14

Hangyu Zhang

#	Article	IF	CITATIONS
19	Optimization and comparison of CD4â€ŧargeting lipid–polymer hybrid nanoparticles using different binding ligands. Journal of Biomedical Materials Research - Part A, 2018, 106, 1177-1188.	4.0	12
20	Cu(II) promotes amyloid pore formation. Biochemical and Biophysical Research Communications, 2015, 464, 342-347.	2.1	8
21	Application research of a novel designed peptide as a potential carrier. Science in China Series B: Chemistry, 2009, 52, 632-638.	0.8	5
22	Effect of sonication on a novel designed peptide. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 622-626.	1.0	2