Yijie Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12113002/publications.pdf

Version: 2024-02-01

304743 289244 1,623 46 22 40 citations h-index g-index papers 47 47 47 2542 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Monitoring the reaction kinetics of waterborne 2â€pack polyurethane coatings in the dispersion and during film formation. Canadian Journal of Chemical Engineering, 2022, 100, 703-713.	1.7	2
2	An Enzymeâ€Like Activity Nanoprobe Based on Fe(III)–Rutin Hydrate Biomineral for MR Imaging and Therapy of Triple Negative Breast Cancer. Advanced Functional Materials, 2022, 32, .	14.9	17
3	Monitoring Polymer Diffusion in a Waterborne 2K Polyurethane Formulation Based on an Acrylic Polyol Latex. Macromolecules, 2020, 53, 10744-10753.	4.8	7
4	Characterization of an Aqueous Dispersion of a Hydrophilic Polyisocyanate for Waterborne Two-Pack Polyurethane Coatings. ACS Applied Polymer Materials, 2020, 2, 1491-1499.	4.4	15
5	Dual-Receptor-Targeted (DRT) Radiation Nanomedicine Labeled with ¹⁷⁷ Lu Is More Potent for Killing Human Breast Cancer Cells That Coexpress HER2 and EGFR Than Single-Receptor-Targeted (SRT) Radiation Nanomedicines. Molecular Pharmaceutics, 2020, 17, 1226-1236.	4.6	14
6	Molecular Aspects of Film Formation of Partially Cross-Linked Water-Borne Secondary Dispersions that Show Skin Formation upon Drying. Macromolecules, 2019, 52, 9536-9544.	4.8	8
7	Radioimmunotherapy of PANC-1 Human Pancreatic Cancer Xenografts in NRG Mice with Panitumumab Modified with Metal-Chelating Polymers Complexed to ¹⁷⁷ Lu. Molecular Pharmaceutics, 2019, 16, 768-778.	4.6	16
8	Self-Seeding of Block Copolymers with a π-Conjugated Oligo(<i>p</i> -phenylenevinylene) Segment: A Versatile Route toward Monodisperse Fiber-like Nanostructures. Macromolecules, 2018, 51, 2065-2075.	4.8	67
9	Panitumumab Modified with Metal-Chelating Polymers (MCP) Complexed to ¹¹¹ In and ¹⁷⁷ Luâ€"An EGFR-Targeted Theranostic for Pancreatic Cancer. Molecular Pharmaceutics, 2018, 15, 1150-1159.	4.6	39
10	Monitoring Collapse of Uniform Cylindrical Brushes with a Thermoresponsive Corona in Water. ACS Macro Letters, 2018, 7, 166-171.	4.8	12
11	Creating Biomorphic Barbed and Branched Mesostructures in Solution through Block Copolymer Crystallization. Angewandte Chemie - International Edition, 2018, 57, 17205-17210.	13.8	14
12	Creating Biomorphic Barbed and Branched Mesostructures in Solution through Block Copolymer Crystallization. Angewandte Chemie, 2018, 130, 17451-17456.	2.0	2
13	EGFR-Targeted Metal Chelating Polymers (MCPs) Harboring Multiple Pendant PEG2K Chains for MicroPET/CT Imaging of Patient-Derived Pancreatic Cancer Xenografts. ACS Biomaterials Science and Engineering, 2017, 3, 279-290.	5. 2	7
14	Local Radiation Treatment of HER2-Positive Breast Cancer Using Trastuzumab-Modified Gold Nanoparticles Labeled with 177Lu. Pharmaceutical Research, 2017, 34, 579-590.	3 . 5	61
15	Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with ¹¹¹ In, ¹⁷⁷ Lu or ⁹⁰ Y incorporated into tissue implantable depots. Physics in Medicine and Biology, 2017, 62, 8581-8599.	3.0	11
16	PFS- <i>b</i> -PNIPAM: A First Step toward Polymeric Nanofibrillar Hydrogels Based on Uniform Fiber-Like Micelles. Macromolecules, 2016, 49, 4265-4276.	4.8	28
17	PEGMA-Based Microgels: A Thermoresponsive Support for Enzyme Reactions. Macromolecules, 2016, 49, 8711-8721.	4.8	17
18	Intratumorally Injected ¹⁷⁷ Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer. Journal of Nuclear Medicine, 2016, 57, 936-942.	5 . O	92

#	Article	IF	CITATIONS
19	Stability and Biodistribution of Thiol-Functionalized and ¹⁷⁷ Lu-Labeled Metal Chelating Polymers Bound to Gold Nanoparticles. Biomacromolecules, 2016, 17, 1292-1302.	5.4	32
20	Hybrid Microgels with Confined Needle-like Lanthanide Phosphate Nanocrystals. Chemistry of Materials, 2016, 28, 501-510.	6.7	7
21	Trastuzumab Labeled to High Specific Activity with $\langle \sup \rangle 111 \langle \sup \rangle \ln$ by Site-Specific Conjugation to a Metal-Chelating Polymer Exhibits Amplified Auger Electron-Mediated Cytotoxicity on HER2-Positive Breast Cancer Cells. Molecular Pharmaceutics, 2015, 12, 1951-1960.	4.6	26
22	Photocleavage of the Corona Chains of Rigid-Rod Block Copolymer Micelles. Macromolecules, 2015, 48, 2254-2262.	4.8	20
23	Radiation Nanomedicine for EGFR-Positive Breast Cancer: Panitumumab-Modified Gold Nanoparticles Complexed to the Î ² -Particle-Emitter, ¹⁷⁷ Lu. Molecular Pharmaceutics, 2015, 12, 3963-3972.	4.6	67
24	Metal-Chelating Polymers (MCPs) with Zwitterionic Pendant Groups Complexed to Trastuzumab Exhibit Decreased Liver Accumulation Compared to Polyanionic MCP Immunoconjugates. Biomacromolecules, 2015, 16, 3613-3623.	5.4	28
25	Temperature-Invariant Aqueous Microgels as Hosts for Biomacromolecules. Biomacromolecules, 2015, 16, 3134-3144.	5.4	9
26	A High-Sensitivity Lanthanide Nanoparticle Reporter for Mass Cytometry: Tests on Microgels as a Proxy for Cells. Langmuir, 2014, 30, 3142-3153.	3.5	22
27	Synthesis of PMMA Microparticles with a Narrow Size Distribution by Photoinitiated RAFT Dispersion Polymerization with a Macromonomer as the Stabilizer. Macromolecules, 2014, 47, 6856-6866.	4.8	38
28	Organometallic–Polypeptide Diblock Copolymers: Synthesis by Diels–Alder Coupling and Crystallization-Driven Self-Assembly to Uniform Truncated Elliptical Lamellae. Macromolecules, 2014, 47, 2604-2615.	4.8	23
29	Synthesis of Polyglutamide-Based Metal-Chelating Polymers and Their Site-Specific Conjugation to Trastuzumab for Auger Electron Radioimmunotherapy. Biomacromolecules, 2014, 15, 2027-2037.	5.4	34
30	Intracellular Routing in Breast Cancer Cells of Streptavidin-Conjugated Trastuzumab Fab Fragments Linked to Biotinylated Doxorubicin-Functionalized Metal Chelating Polymers. Biomacromolecules, 2014, 15, 715-725.	5.4	19
31	Fast electrically driven photonic crystal based on charged block copolymer. Journal of Materials Chemistry C, 2013, 1, 6107.	5.5	32
32	Self-Seeding in One Dimension: A Route to Uniform Fiber-like Nanostructures from Block Copolymers with a Crystallizable Core-Forming Block. ACS Nano, 2013, 7, 3754-3766.	14.6	98
33	The Effect of Metal-Chelating Polymers (MCPs) for 111In Complexed via the Streptavidin-Biotin System to Trastuzumab Fab Fragments on Tumor and Normal Tissue Distribution in Mice. Pharmaceutical Research, 2013, 30, 104-116.	3.5	16
34	A Comparative Study of Urea-Induced Aggregation of Collapsed Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) and Poly($\langle i \rangle N \langle i \rangle$, $\langle i \rangle N \langle i \rangle$ -diethylacrylamide) Chains in Aqueous Solutions. Journal of Physical Chemistry B, 2013, 117, 7481-7488.	2.6	19
35	An Apparent Size-Exclusion Quantification Limit Reveals a Molecular Weight Limit in the Synthesis of Externally Initiated Polythiophenes. ACS Macro Letters, 2012, 1, 1266-1269.	4.8	70
36	Polyferrocenylsilane Crystals in Nanoconfinement: Fragmentation, Dissolution, and Regrowth of Cylindrical Block Copolymer Micelles with a Crystalline Core. Macromolecules, 2012, 45, 8363-8372.	4.8	30

#	ARTICLE	lF	CITATION
37	Biotinylated Polyacrylamide-Based Metal-Chelating Polymers and Their Influence on Antigen Recognition Following Conjugation to a Trastuzumab Fab Fragment. Biomacromolecules, 2012, 13, 2831-2842.	5.4	15
38	Effect of Pendant Group Structure on the Hydrolytic Stability of Polyaspartamide Polymers under Physiological Conditions. Biomacromolecules, 2012, 13, 1296-1306.	5.4	25
39	Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. Soft Matter, 2011, 7, 4156.	2.7	16
40	Kinetics of Laser-Heating-Induced Phase Transition of Poly(N-isopropylacrylamide) Chains in Dilute and Semidilute Solutions. Journal of Physical Chemistry B, 2011, 115, 12001-12006.	2.6	20
41	Selfâ€Seeding in One Dimension: An Approach To Control the Length of Fiberlike Polyisoprene–Polyferrocenylsilane Block Copolymer Micelles. Angewandte Chemie - International Edition, 2011, 50, 1622-1625.	13.8	141
42	Origin of hysteresis observed in association and dissociation of polymer chains in water. Physical Chemistry Chemical Physics, 2010, 12, 3188.	2.8	81
43	Electrically tunable block copolymer photonic crystals with a full color display. Journal of Materials Chemistry, 2009, 19, 5952.	6.7	85
44	The Coil-to-Globule-to-Coil Transition of Linear Polymer Chains in Dilute Aqueous Solutions: Effect of Intrachain Hydrogen Bonding. Macromolecules, 2008, 41, 8927-8931.	4.8	92
45	Synthesis, Folding, and Association of Long Multiblock (PEO23-b-PNIPAM124)750Chains in Aqueous Solutions. Macromolecules, 2008, 41, 2228-2234.	4.8	41
46	How Many Stages in the Coil-to-Globule Transition of Linear Homopolymer Chains in a Dilute Solution?. Macromolecules, 2007, 40, 4750-4752.	4.8	68