## Jose Avila

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12111781/publications.pdf

Version: 2024-02-01

117625 91884 6,375 70 34 69 h-index citations g-index papers 70 70 70 8484 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IF                       | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| 1  | Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.1                      | 9         |
| 2  | Interplay of crystal thickness and in-plane anisotropy and evolution of quasi-one-dimensional electronic character in ReSe2. Physical Review B, 2021, 104, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.2                      | 5         |
| 3  | Visualizing electron localization of WS $<$ sub $>$ 2 $<$ /sub $>$ /WSe $<$ sub $>$ 2 $<$ /sub $>$ moir $\tilde{A}$ $\otimes$ superlattices in momentum space. Science Advances, 2021, 7, eabf4387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.3                     | 24        |
| 4  | Indirect to direct band gap crossover in two-dimensional WS2( $1\hat{a}^2x$ )Se2x alloys. Npj 2D Materials and Applications, 2021, 5, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.9                      | 31        |
| 5  | Spatially-resolved electronic structure of stripe domains in IrTe2 through electronic structure microscopy. Communications Physics, 2021, 4, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.3                      | 4         |
| 6  | Strain and Spin-Orbit Coupling Engineering in Twisted WS2/Graphene Heterobilayer. Nanomaterials, 2021, 11, 2921.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1                      | 10        |
| 7  | Insights into the Arsenic Shell Decapping Mechanisms in As/GaAs Nanowires by X-ray and Electron Microscopy. Journal of Physical Chemistry C, 2021, 125, 28136-28142.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                      | 2         |
| 8  | Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nature Nanotechnology, 2020, 15, 861-867.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.5                     | 79        |
| 9  | Effect of Band Symmetry on Photocurrent Production in Quasi-One-Dimensional Transition-Metal Trichalcogenides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40525-40531.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0                      | 21        |
| 10 | Structural and electronic transitions in few layers of isotopically pure hexagonal boron nitride. Physical Review B, 2020, 102, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.2                      | 6         |
| 11 | Dimensionality-Mediated Semimetal-Semiconductor Transition in Ultrathin <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow><mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mfl:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> | ıml <mark>:m</mark> n>2< | /mml:mn>  |
| 12 | Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene. Nature Communications, 2020, 11, 546.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.8                     | 47        |
| 13 | The electronic band structure of quasi-one-dimensional van der Waals semiconductors: the effective hole mass of ZrS <sub>3</sub> compared to TiS <sub>3</sub> . Journal of Physics Condensed Matter, 2020, 32, 29LT01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8                      | 12        |
| 14 | Graphene synthesis on SiO2 using pulsed laser deposition with bilayer predominance. Materials Chemistry and Physics, 2019, 238, 121905.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0                      | 13        |
| 15 | Strong interlayer hybridization in the aligned SnS2/WSe2 hetero-bilayer structure. Npj 2D Materials and Applications, 2019, 3, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.9                      | 39        |
| 16 | The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS <sub>2</sub> . Nano Letters, 2019, 19, 4641-4650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.1                      | 39        |
| 17 | Nanospot angle-resolved photoemission study of Bernal-stacked bilayer graphene on hexagonal boron nitride: Band structure and local variation of lattice alignment. Physical Review B, 2019, 99, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2                      | 13        |
| 18 | Nanomosaic of Topological Dirac States on the Surface of Pb <sub>5</sub> Bi <sub>24</sub> Se <sub>41</sub> Observed by Nano-ARPES. Nano Letters, 2019, 19, 3737-3742.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.1                      | 10        |

| #  | Article                                                                                                                                                                                                                 | IF   | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Visualizing the Effect of an Electrostatic Gate with Angle-Resolved Photoemission Spectroscopy. Nano Letters, 2019, 19, 2682-2687.                                                                                      | 9.1  | 32        |
| 20 | Electroanalytical Performance of Nitrogen-Doped Graphene Films Processed in One Step by Pulsed Laser Deposition Directly Coupled with Thermal Annealing. Materials, 2019, 12, 666.                                      | 2.9  | 13        |
| 21 | Gate-Controlled Metal–Insulator Transition in TiS <sub>3</sub> Nanowire Field-Effect Transistors.<br>ACS Nano, 2019, 13, 803-811.                                                                                       | 14.6 | 54        |
| 22 | Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source. Scientific Reports, 2018, 8, 3247.                                                                                               | 3.3  | 72        |
| 23 | Unraveling the Structural and Electronic Properties at the WSe <sub>2</sub> –Graphene Interface for a Rational Design of van der Waals Heterostructures. ACS Applied Nano Materials, 2018, 1, 1131-1140.                | 5.0  | 19        |
| 24 | Large local lattice expansion in graphene adlayers grown on copper. Nature Materials, 2018, 17, 450-455.                                                                                                                | 27.5 | 13        |
| 25 | The band structure of the quasi-one-dimensional layered semiconductor TiS3(001). Applied Physics Letters, 2018, 112, .                                                                                                  | 3.3  | 38        |
| 26 | Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265.                                                                                                                       | 10.3 | 41        |
| 27 | Emergence of Interfacial Polarons from Electron–Phonon Coupling in Graphene/h-BN van der Waals<br>Heterostructures. Nano Letters, 2018, 18, 1082-1087.                                                                  | 9.1  | 55        |
| 28 | Valence band inversion and spin-orbit effects in the electronic structure of monolayer GaSe. Physical Review B, $2018, 98, .$                                                                                           | 3.2  | 47        |
| 29 | Flat electronic bands in long sequences of rhombohedral-stacked graphene. Physical Review B, 2018, 97, .                                                                                                                | 3.2  | 46        |
| 30 | Resolving Deep Quantum-Well States in Atomically Thin 2H-MoTe <sub>2</sub> Flakes by Nanospot Angle-Resolved Photoemission Spectroscopy. Nano Letters, 2018, 18, 4664-4668.                                             | 9.1  | 13        |
| 31 | Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint. ACS Nano, 2018, 12, 7571-7582.                                                                                                            | 14.6 | 38        |
| 32 | Black Arsenic: A Layered Semiconductor with Extreme Inâ€Plane Anisotropy. Advanced Materials, 2018, 30, e1800754.                                                                                                       | 21.0 | 161       |
| 33 | Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6928-6933. | 7.1  | 169       |
| 34 | Stacking-Dependent Electronic Structure of Trilayer Graphene Resolved by Nanospot Angle-Resolved Photoemission Spectroscopy. Nano Letters, 2017, 17, 1564-1568.                                                         | 9.1  | 63        |
| 35 | Direct observation of the band structure in bulk hexagonal boron nitride. Physical Review B, 2017, 95, .                                                                                                                | 3.2  | 65        |
| 36 | Chemical and electronic structure imaging of graphene on Cu: a NanoARPES study. Journal of Physics Condensed Matter, 2017, 29, 183001.                                                                                  | 1.8  | 6         |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Electronic structure determination using an assembly of conventional and synchrotron techniques:<br>The case of a xanthate complex. Spectrochimica Acta - Part A: Molecular and Biomolecular<br>Spectroscopy, 2017, 180, 183-192.         | 3.9  | 6         |
| 38 | Substrate dependent electronic structure variations of van der Waals heterostructures of MoSe <sub>2</sub> or MoSe <sub>2(1â^' <i>x</i>) </sub> Te <sub> 2 <i>x</i> </sub> grown by van der Waals epitaxy. 2D Materials, 2017, 4, 025094. | 4.4  | 19        |
| 39 | Electronic structure of graphene/hexagonal boron nitride heterostructure revealed by Nano-ARPES. Journal of Physics: Conference Series, 2017, 864, 012005.                                                                                | 0.4  | 8         |
| 40 | Electronic structure of polycrystalline CVD-graphene revealed by Nano-ARPES. Journal of Physics: Conference Series, 2017, 849, 012019.                                                                                                    | 0.4  | 4         |
| 41 | High-resolution Electronic and Chemical imaging of wonder nanomaterials beyond graphene. Journal of Physics: Conference Series, 2017, 864, 012036.                                                                                        | 0.4  | 0         |
| 42 | Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS Omega, 2017, 2, 3691-3697.                                                                                                                   | 3.5  | 32        |
| 43 | Optimal focusing system of the Fresnel zone plates at the Synchrotron SOLEIL NanoARPES beamline. Journal of Physics: Conference Series, 2017, 849, 012039.                                                                                | 0.4  | 11        |
| 44 | Degradation of Albumin on Plasma-Treated Polystyrene by Soft X-ray Exposure. Polymers, 2016, 8, 244.                                                                                                                                      | 4.5  | 3         |
| 45 | Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse. Applied Physics Letters, 2016, 109, .                                                                                    | 3.3  | 41        |
| 46 | Quantum Transport and Nano Angle-resolved Photoemission Spectroscopy on the Topological Surface States of Single Sb2Te3 Nanowires. Scientific Reports, 2016, 6, 29493.                                                                    | 3.3  | 43        |
| 47 | Experimental observation of two massless Dirac-fermion gases in graphene-topological insulator heterostructure. 2D Materials, 2016, 3, 021009.                                                                                            | 4.4  | 21        |
| 48 | Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES. Journal of Physics Condensed Matter, 2016, 28, 444002.                                                       | 1.8  | 14        |
| 49 | Band Alignment and Minigaps in Monolayer MoS <sub>2</sub> -Graphene van der Waals<br>Heterostructures. Nano Letters, 2016, 16, 4054-4061.                                                                                                 | 9.1  | 288       |
| 50 | Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi <sub>2</sub> Te <sub>3</sub> Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy. Nano Letters, 2016, 16, 4001-4007.                                 | 9.1  | 13        |
| 51 | Band renormalization and spin polarization of MoS <sub>2</sub> in graphene/MoS <sub>2</sub> heterostructures. Physica Status Solidi - Rapid Research Letters, 2015, 9, 701-706.                                                           | 2.4  | 17        |
| 52 | van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil: growth, crystallography and electronic band structure. 2D Materials, 2015, 2, 025003.                                                                          | 4.4  | 51        |
| 53 | Direct Observation of Interlayer Hybridization and Dirac Relativistic Carriers in Graphene/MoS <sub>2</sub> van der Waals Heterostructures. Nano Letters, 2015, 15, 1135-1140.                                                            | 9.1  | 163       |
| 54 | Effect of oxygen and nitrogen functionalization on the physical and electronic structure of graphene. Nano Research, 2015, 8, 2620-2635.                                                                                                  | 10.4 | 47        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                    | IF                       | CITATIONS         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|
| 55 | Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface. Nature Communications, 2015, 6, 8585.                                                                                                                                                                                                                                             | 12.8                     | 127               |
| 56 | Atomic structure of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mn>3</mml:mn><mml:mo>A—</mml:mo><mml:mspace width="0.16em"></mml:mspace><mml:mn>3</mml:mn></mml:msqrt>&gt;dmml:msqrt&gt;&gt;dmml:msqrt&gt;&gt;dmml:msqrt&gt;&gt;dmml:math&gt;phase of silicene on Ag(111). Physical Review B, 2014, 90, .</mml:mrow></mml:math> | :msqrt> <r<br>3.2</r<br> | nml:mspace<br>107 |
| 57 | First NanoARPES User Facility Available at SOLEIL: An Innovative and Powerful Tool for Studying Advanced Materials. Synchrotron Radiation News, 2014, 27, 24-30.                                                                                                                                                                                                           | 0.8                      | 72                |
| 58 | Polycrystalline Graphene with Single Crystalline Electronic Structure. Nano Letters, 2014, 14, 5706-5711.                                                                                                                                                                                                                                                                  | 9.1                      | 134               |
| 59 | Is graphene on copper doped?. Physica Status Solidi - Rapid Research Letters, 2013, 7, 643-646.                                                                                                                                                                                                                                                                            | 2.4                      | 30                |
| 60 | Evidence of Dirac fermions in multilayer silicene. Applied Physics Letters, 2013, 102, .                                                                                                                                                                                                                                                                                   | 3.3                      | 180               |
| 61 | The quasiparticle band dispersion in epitaxial multilayer silicene. Journal of Physics Condensed Matter, 2013, 25, 382202.                                                                                                                                                                                                                                                 | 1.8                      | 55                |
| 62 | Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study. Scientific Reports, 2013, 3, 2439.                                                                                                                                                                                                             | 3.3                      | 81                |
| 63 | Interferometer-controlled soft X-ray scanning photoemission microscope at SOLEIL. Journal of Physics: Conference Series, 2013, 425, 132013.                                                                                                                                                                                                                                | 0.4                      | 10                |
| 64 | ANTARES, a scanning photoemission microscopy beamline at SOLEIL. Journal of Physics: Conference Series, 2013, 425, 192023.                                                                                                                                                                                                                                                 | 0.4                      | 43                |
| 65 | Chemical imaging and angle-resolved photoemission study of well-ordered thermally reduced SrTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> (100). Physical Review B, 2012, 85, .                                                                                    | 3.2                      | 14                |
| 66 | Band-gap expansion in the surface-localized electronic structure of MoS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> (0002). Physical Review B, 2012, 86, .                                                                                                           | 3.2                      | 47                |
| 67 | Zooming in on Electronic Structure: NanoARPES at SOLEIL and ALS. Synchrotron Radiation News, 2012, 25, 19-25.                                                                                                                                                                                                                                                              | 0.8                      | 36                |
| 68 | Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Physical Review Letters, 2012, 108, 155501.                                                                                                                                                                                                                                           | 7.8                      | 3,275             |
| 69 | Perturbation of Ge(111) and Si(111) $\hat{a}$ 3 $\hat{s}$ 3 $\hat{t}$ +-Sn surfaces by adsorption of dopants. Surface Science, 2006, 600, 3154-3159.                                                                                                                                                                                                                       | 1.9                      | 4                 |
| 70 | COMPLEX BEHAVIORS AT SIMPLE SEMICONDUCTOR AND METAL/SEMICONDUCTOR SURFACES. Surface Review and Letters, 2003, 10, 981-1008.                                                                                                                                                                                                                                                | 1.1                      | 16                |