Jin Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/1211060/jin-zhao-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,169 26 40 39 g-index h-index citations papers 3,854 5.38 40 12 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
39	Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance. <i>Advanced Materials</i> , 2015 , 27, 3541-5	24	573
38	Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity. <i>ACS Catalysis</i> , 2015 , 5, 6707-6712	13.1	400
37	Porous 3D Few-Layer Graphene-like Carbon for Ultrahigh-Power Supercapacitors with Well-Defined Structure-Performance Relationship. <i>Advanced Materials</i> , 2017 , 29, 1604569	24	310
36	Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithiumBulfur batteries. <i>Nano Energy</i> , 2015 , 12, 657-665	17.1	196
35	Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. <i>Energy and Environmental Science</i> , 2016 , 9, 2053-2060	35.4	180
34	Three-Dimensional Nitrogen-Doped Carbon Nanotubes/Graphene Structure Used as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24592-24	4 3 97	160
33	High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. <i>Nano Energy</i> , 2019 , 62, 94-102	17.1	127
32	Predicting the state of charge and health of batteries using data-driven machine learning. <i>Nature Machine Intelligence</i> , 2020 , 2, 161-170	22.5	121
31	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. <i>ACS Nano</i> , 2019 , 13, 7975-7984	16.7	104
30	Porous Hybrid Composites of Few-Layer MoS2 Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance. <i>Small</i> , 2015 , 11, 6480-90	11	89
29	Amorphous Fe-Ni-P-B-O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. <i>ACS Nano</i> , 2019 , 13, 12969-12979	16.7	80
28	Partially Reduced Holey Graphene Oxide as High Performance Anode for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1803215	21.8	68
27	Anion Texturing Towards Dendrite-Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie - International Edition, 2021 , 60, 7213-7219	16.4	68
26	Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. <i>Nano Research</i> , 2015 , 8, 3535-3543	10	64
25	Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. <i>Nano Research</i> , 2019 , 12, 1347-1353	10	62
24	Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. <i>Nano Materials Science</i> , 2020 , 2, 248-263	10.2	61
23	Layered VOPO4 as a Cathode Material for Rechargeable Zinc-Ion Battery: Effect of Polypyrrole Intercalation in the Host and Water Concentration in the Electrolyte. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8667-8674	6.1	50

(2021-2012)

22	Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium. <i>New Journal of Chemistry</i> , 2012 , 36, 1108	3.6	48	
21	N-heterocyclic carbene complexes of Group 6 metals. <i>Coordination Chemistry Reviews</i> , 2015 , 293-294, 292-326	23.2	46	
20	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. <i>Nano-Micro Letters</i> , 2018 , 10, 67	19.5	44	
19	Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes. <i>Nano Letters</i> , 2020 , 20, 3403-3410	11.5	36	
18	S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 801-10	3.6	35	
17	Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19679		35	
16	Codoped Holey Graphene Aerogel by Selective Etching for High-Performance Sodium-Ion Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 2000099	21.8	29	
15	Hydrophilic engineering of VOx-based nanosheets for ambient electrochemical ammonia synthesis at neutral pH. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5913-5918	13	27	
14	Asymmetric-Layered Tin Thiophosphate: An Emerging 2D Ternary Anode for High-Performance Sodium Ion Full Cell. <i>ACS Nano</i> , 2018 , 12, 12902-12911	16.7	26	
13	Anion Texturing Towards Dendrite-Free Zn Anode for Aqueous Rechargeable Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 7289-7295	3.6	22	
12	Advanced electro-active dry adhesive actuated by an artificial muscle constructed from an ionic polymer metal composite reinforced with nitrogen-doped carbon nanocages. <i>Journal of Bionic Engineering</i> , 2017 , 14, 567-578	2.7	20	
11	Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21313-21319	13	19	
10	Cyclopentadienyl Molybdenum(II) N,C-Chelating Benzothiazole-Carbene Complexes: Synthesis, Structure, and Application in Cyclooctene Epoxidation Catalysis. <i>Organometallics</i> , 2014 , 33, 2457-2466	3.8	14	
9	Spinel Nickel Cobaltite Mesostructures Assembled from Ultrathin Nanosheets for High-Performance Electrochemical Energy Storage. <i>ACS Applied Energy Materials</i> , 2018 , 1, 684-691	6.1	11	
8	Cyclopentadienyl nickel(ii) N,C-chelating benzothiazolyl NHC complexes: synthesis, characterization and application in catalytic C-C bond formation reactions. <i>Dalton Transactions</i> , 2016 , 45, 7312-9	4.3	11	
7	Nickel-Catalyzed Facile [2+2+2] Cyclotrimerization of Unactivated Internal Alkynes to Polysubstituted Benzenes. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 168-173	4.5	10	
6	CoSe-Decorated NbSe Nanosheets Fabricated via Cation Exchange for Li Storage. <i>ACS Applied Materials & Discourse Materials & Discour</i>	9.5	10	
5	Integrated Porous Cu Host Induced High-Stable Bidirectional Li Plating/Stripping Behavior for Practical Li Metal Batteries. <i>Small</i> , 2021 , e2105999	11	4	

4	Enlarging ion-transfer micropore channels of hierarchical carbon nanocages for ultrahigh energy and power densities. <i>Science China Materials</i> , 2021 , 64, 2173-2181	7.1	4
3	Seven-Coordinate MoIIDiiodo Complexes with BenzothiazoleN-Heterocyclic-Carbene Ligands and Their Mo0 Precursors: Synthesis, Structures, and Catalytic Application in the Epoxidation of cis-Cyclooctene. <i>Asian Journal of Organic Chemistry</i> , 2018 , 7, 395-403	3	4
2	Regioselective Synthesis of Fatty Acid Esters of Glycosides Containing Cis-diol and Biological Test against Bacterial Staphylococcus aureus and Salmonella agona. <i>Journal of the Chinese Chemical Society</i> , 2012 , 59, 1111-1118	1.5	1
1	Enhanced Electron Transfer and Spin Flip through SpinDrbital Couplings in Organic/Inorganic Heterojunctions: A Nonadiabatic Surface Hopping Simulation. <i>Journal of Physical Chemistry Letters</i> ,484	0- 48 48	0