Felix Zamora

List of Publications by Citations

Source: https://exaly.com/author-pdf/1211042/felix-zamora-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 233
 10,177
 48
 93

 papers
 citations
 h-index
 g-index

 247
 11,563
 8.9
 6.65

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
233	2D materials: to graphene and beyond. <i>Nanoscale</i> , 2011 , 3, 20-30	7.7	1095
232	Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. <i>Chemical Society Reviews</i> , 2016 , 45, 5635-5671	58.5	733
231	Recent progress in 2D group-VA semiconductors: from theory to experiment. <i>Chemical Society Reviews</i> , 2018 , 47, 982-1021	58.5	549
230	Electrical conductive coordination polymers. <i>Chemical Society Reviews</i> , 2012 , 41, 115-47	58.5	459
229	Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. <i>Advanced Materials</i> , 2016 , 28, 6332-6	24	374
228	Few-Layer Antimonene by Liquid-Phase Exfoliation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14345-14349	16.4	299
227	Delamination of layered covalent organic frameworks. <i>Small</i> , 2011 , 7, 1207-11	11	199
226	Single layers of a multifunctional laminar Cu(I,II) coordination polymer. <i>Chemical Communications</i> , 2010 , 46, 3262-4	5.8	199
225	Recent Progress on Antimonene: A New Bidimensional Material. <i>Advanced Materials</i> , 2018 , 30, 1703771	24	189
224	Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly-Conductive Graphene Monolayers. <i>Advanced Materials</i> , 2009 , 21, 4683-4686	24	189
223	Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(II). <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17973-17981	13	139
222	Covalent organic framework nanosheets: preparation, properties and applications. <i>Chemical Society Reviews</i> , 2020 , 49, 2291-2302	58.5	135
221	Ionic Conductivity and Potential Application for Fuel Cell of a Modified Imine-Based Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10079-10086	16.4	135
220	Solvent-induced delamination of a multifunctional two dimensional coordination polymer. <i>Advanced Materials</i> , 2013 , 25, 2141-6	24	130
219	Mechanical and optical properties of ultralarge flakes of a metal-organic framework with molecular thickness. <i>Chemical Science</i> , 2015 , 6, 2553-2558	9.4	121
218	One-dimensional coordination polymers on surfaces: towards single molecule devices. <i>Chemical Society Reviews</i> , 2010 , 39, 4220-33	58.5	114
217	Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. <i>Advanced Energy Materials</i> , 2018 , 8, 1702606	21.8	109

(2009-1997)

216	Metal-Stabilized Rare Tautomers of Nucleobases. 6. Imino Tautomer of Adenine in a Mixed-Nucleobase Complex of Mercury(II). <i>Inorganic Chemistry</i> , 1997 , 36, 1583-1587	5.1	106
215	MasterChem: cooking 2D-polymers. <i>Chemical Communications</i> , 2016 , 52, 4113-27	5.8	94
214	Direct On-Surface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature. <i>Chemistry - A European Journal</i> , 2015 , 21, 10666-70	4.8	93
213	A conducting coordination polymer based on assembled Cu9 cages. <i>Inorganic Chemistry</i> , 2008 , 47, 9128	- 35 01	93
212	Coordination polymers with nucleobases: From structural aspects to potential applications. <i>Coordination Chemistry Reviews</i> , 2014 , 276, 34-58	23.2	91
211	Electrical conductivity and luminescence in coordination polymers based on copper(I)-halides and sulfur-pyrimidine ligands. <i>Inorganic Chemistry</i> , 2012 , 51, 718-27	5.1	86
210	Highly conductive self-assembled nanoribbons of coordination polymers. <i>Nature Nanotechnology</i> , 2010 , 5, 110-5	28.7	84
209	Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12922-12929	16.4	81
208	Tuning delamination of layered covalent organic frameworks through structural design. <i>Chemical Communications</i> , 2012 , 48, 7976-8	5.8	79
207	Formation of a surface covalent organic framework based on polyester condensation. <i>Chemical Communications</i> , 2012 , 48, 6779-81	5.8	78
206	Processing of covalent organic frameworks: an ingredient for a material to succeed. <i>Chemical Society Reviews</i> , 2019 , 48, 4375-4386	58.5	76
205	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. <i>Chemical Communications</i> , 2016 , 52, 9212-5	5.8	73
204	Microwave assisted hydrothermal synthesis of a novel Cul-sulfate-pyrazine MOF. <i>Inorganic Chemistry Communication</i> , 2007 , 10, 921-924	3.1	72
203	Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4343-4351	13	71
202	From Coordination Polymer Macrocrystals to Nanometric Individual Chains. <i>Advanced Materials</i> , 2005 , 17, 1761-1765	24	70
201	Noncovalent Functionalization and Charge Transfer in Antimonene. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14389-14394	16.4	68
200	Highly conductive supramolecular nanostructures of a covalently linked phthalocyanine-C60 fullerene conjugate. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2026-31	16.4	68
199	Graphene Monolayers: Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly-Conductive Graphene Monolayers (Adv. Mater. 46/2009). <i>Advanced Materials</i> , 2009 , 21, n/a-n/a	24	63

198	Studies on bifunctional Fe(II)-triazole spin crossover nanoparticles: time-dependent luminescence, surface grafting and the effect of a silica shell and hydrostatic pressure on the magnetic properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7819-7829	7.1	59
197	Palladium (II) compounds of putrescine and spermine. Synthesis, characterization, and DNA-binding and antitumor properties. <i>Journal of Inorganic Biochemistry</i> , 1993 , 52, 37-49	4.2	58
196	Intrinsic electrical conductivity of nanostructured metal-organic polymer chains. <i>Nature Communications</i> , 2013 , 4, 1709	17.4	56
195	Geometry and electronic structure of M-DNA (M=Zn2+, Co2+, and Fe2+). <i>Physical Review B</i> , 2006 , 73,	3.3	56
194	An Aza-Fused Econjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. <i>ACS Catalysis</i> , 2017 , 7, 1015-1024	13.1	54
193	Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications. <i>Small</i> , 2018 , 14, e1800633	11	53
192	Few-Layer Antimonene by Liquid-Phase Exfoliation. <i>Angewandte Chemie</i> , 2016 , 128, 14557-14561	3.6	53
191	Assembling of dimeric entities of Cd(II) with 6-mercaptopurine to afford one-dimensional coordination polymers: synthesis and scanning probe microscopy characterization. <i>Inorganic Chemistry</i> , 2006 , 45, 7642-50	5.1	52
190	Scanning probe microscopy characterization of single chains based on a one-dimensional oxalato-bridged manganese(II) complex with 4-aminotriazole. <i>Inorganic Chemistry</i> , 2005 , 44, 8343-8	5.1	51
189	Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. <i>Chemical Communications</i> , 2019 , 55, 1382-1385	5.8	49
188	Towards Molecular Wires Based on Metal-Organic Frameworks. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 2885-2896	2.3	49
187	Design and non-covalent DNA binding of platinum(II) metallacalix[4]arenes. <i>Chemistry - A European Journal</i> , 2007 , 13, 5075-81	4.8	49
186	Optical Identification of Few-Layer Antimonene Crystals. ACS Photonics, 2017, 4, 600-605	6.3	48
185	Coordination polymers for nanoelectronics. <i>Advanced Materials</i> , 2011 , 23, 5311-7	24	45
184	Confining Functional Nanoparticles into Colloidal Imine-Based COF Spheres by a Sequential Encapsulation-Crystallization Method. <i>Chemistry - A European Journal</i> , 2017 , 23, 8623-8627	4.8	42
183	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9512-9516	16.4	42
182	Direct evidence of nanowires formation from a Cu(I) coordination polymer. <i>Chemical Communications</i> , 2008 , 945-7	5.8	42
181	Palladium(II) salt and complexes of spermidine with a six-member chelate ring. Synthesis, characterization, and initial DNA-binding and antitumor studies. <i>Journal of Inorganic Biochemistry</i> , 1992 , 46, 267-79	4.2	42

(2015-2016)

180	Metal-Organic Frameworks Containing Missing-Linker Defects Leading to High Hydroxide-Ion Conductivity. <i>Chemistry - A European Journal</i> , 2016 , 22, 1646-51	4.8	41
179	MMX polymer chains on surfaces. <i>Chemical Communications</i> , 2007 , 1591-3	5.8	41
178	Perspectives of the smart Cu-lodine coordination polymers: A portage to the world of new nanomaterials and composites. <i>Coordination Chemistry Reviews</i> , 2019 , 381, 65-78	23.2	41
177	Organization of Coordination Polymers on Surfaces by Direct Sublimation. <i>Advanced Materials</i> , 2009 , 21, 2025-2028	24	40
176	Synthesis of designed conductive one-dimensional coordination polymers of Ni(II) with 6-mercaptopurine and 6-thioguanine. <i>Inorganic Chemistry</i> , 2009 , 48, 7931-6	5.1	40
175	Conductive Nanostructures of MMX Chains. Advanced Functional Materials, 2010, 20, 1451-1457	15.6	40
174	Reversible Thermochromic Polymeric Thin Films Made of Ultrathin 2D Crystals of Coordination Polymers Based on Copper(I)-Thiophenolates. <i>Advanced Functional Materials</i> , 2018 , 28, 1704040	15.6	39
173	Electrical conductivity in platinum-dimer columns. <i>Inorganic Chemistry</i> , 2008 , 47, 9736-8	5.1	38
172	Metallicity in individual MMX chains. Journal of the American Chemical Society, 2008, 130, 5552-62	16.4	37
171	Semiconductive and magnetic one-dimensional coordination polymers of Cu(II) with modified nucleobases. <i>Inorganic Chemistry</i> , 2013 , 52, 11428-37	5.1	36
170	Cyclometallated complexes of Pd(II) and Pt(II) with 2-phenylimidazoline. <i>Journal of Organometallic Chemistry</i> , 1996 , 506, 149-154	2.3	36
169	Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modified electrodes. <i>Sensors and Actuators B: Chemical</i> , 2016 , 222, 331-338	8.5	35
168	5,5?-Diuracilyl Species from Uracil and [AuCl4][INucleobase Dimerization Brought about by a Metal. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2274-2275	16.4	35
167	Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. <i>Chemical Science</i> , 2015 , 6, 1949-1958	9.4	34
166	Smart composite films of nanometric thickness based on copper-iodine coordination polymers. Toward sensors. <i>Chemical Science</i> , 2018 , 9, 8000-8010	9.4	34
165	Biomimetic Synthesis of Sub-20 nm Covalent Organic Frameworks in Water. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3540-3547	16.4	33
164	A photoresponsive graphene oxide-C60 conjugate. Chemical Communications, 2014, 50, 9053-5	5.8	33
163	Reversible stimulus-responsive Cu(I) iodide pyridine coordination polymer. <i>Chemical Communications</i> , 2015 , 51, 14306-9	5.8	32

162	Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol. <i>Chemistry - A European Journal</i> , 2016 , 22, 18027-18035	4.8	32
161	Multistimuli Response Micro- and Nanolayers of a Coordination Polymer Based on Cu I Chains Linked by 2-Aminopyrazine. <i>Small</i> , 2017 , 13, 1700965	11	31
160	Copper(i)-iodide cluster structures as functional and processable platform materials. <i>Chemical Society Reviews</i> , 2021 , 50, 4606-4628	58.5	31
159	Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22475-22486	13	30
158	Green synthesis of imine-based covalent organic frameworks in water. <i>Chemical Communications</i> , 2020 , 56, 6704-6707	5.8	30
157	(1,3-Dimethyluracil-5-yl)mercury(II): Preparative, Structural, and NMR Spectroscopic Studies of an Analog of CH(3)Hg(II). <i>Inorganic Chemistry</i> , 1996 , 35, 4858-4864	5.1	30
156	Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. <i>Chemical Communications</i> , 2020 , 56, 1267-1270	5.8	30
155	Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Li-S Batteries. <i>Chemistry - A European Journal</i> , 2019 , 25, 12394-12404	4.8	28
154	Hexanuclear hydrolysis products of the uracil nucleobase complex(1,3-dimethyluracil-5-yl)mercury(ii) nitrate. <i>Chemical Communications</i> , 1997 , 485-486	5.8	28
153	Pd(II) and Pt(II) Complexes of 2-Phenyl- and 2-Benzyl-imidazoline: Synthesis, Structural Characterization, DNA Modification and in vitro Antileukaemic Activity. <i>Applied Organometallic Chemistry</i> , 1997 , 11, 659-666	3.1	28
152	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. <i>Angewandte Chemie</i> , 2019 , 131, 9612-9616	3.6	27
151	Patterned conductive nanostructures from reversible self-assembly of 1D coordination polymer. <i>Chemical Science</i> , 2012 , 3, 2047	9.4	27
150	Crystal structures of a protonated form of trans-[Pt(NH3)2(mura)2] and of a derivative containing three different metal ions, Pt2+, Ag+, and Na+ (mura = 1-methyluracilate). Major difference in packing between heteronucies pyrimidine nucleobase complexes of cis- and trans-(NH3)2PtII.		27
149	Journal of the Chemical Society Dalton Transactions, 1999, 175-182 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II) Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials, 2019, 29, 1808	3 45 4	27
148	Multifunctional Copper(I) Coordination Polymers with Aromatic Mono- and Ditopic Thioamides. <i>Inorganic Chemistry</i> , 2019 , 58, 3290-3301	5.1	26
147	Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers. <i>Inorganic Chemistry</i> , 2013 , 52, 5290-9	5.1	26
146	Time-dependence structures of coordination network wires in solution. ACS Nano, 2008, 2, 2051-6	16.7	26
145	Unexpected multiple bond cleavage and rearrangement of organosulfide ligands in the presence of Cu(II) assisted by solvothermal and solvothermal-microwave conditions. <i>Dalton Transactions</i> , 2011 , 40, 847-52	4.3	25

144	2D/2D Graphitic Carbon Nitride/Antimonene Heterostructure: Structural Characterization and Application in Photocatalysis. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1800138	5.9	25	
143	Noncovalent Functionalization and Charge Transfer in Antimonene. <i>Angewandte Chemie</i> , 2017 , 129, 14	\$ 58.1 614	158 ф	
142	Uracil grafted imine-based covalent organic framework for nucleobase recognition. <i>Chemical Communications</i> , 2018 , 54, 8729-8732	5.8	24	
141	Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives. <i>Chemistry - A European Journal</i> , 2015 , 21, 17282-92	4.8	24	
140	Design of molecular wires based on one-dimensional coordination polymers. <i>Applied Physics Letters</i> , 2007 , 90, 193107	3.4	24	
139	Structural models for the interaction of Cd(II) with DNA: trans-[Cd(9-RGH-N7)2(H2O)4]2+. <i>Journal of Inorganic Biochemistry</i> , 2005 , 99, 1540-7	4.2	24	
138	Copper(II)-Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 987-991	16.4	23	
137	Unveiling the Local Structure of Palladium Loaded into Imine-Linked Layered Covalent Organic Frameworks for Cross-Coupling Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13013-1	13629	23	
136	An unusual triple parallel interpenetrated 2D Cu-polymer, with a 3D triple interpenetration via H-bonding. <i>CrystEngComm</i> , 2007 , 9, 987	3.3	23	
135	AFM Manipulation of Gold Nanowires To Build Electrical Circuits. <i>Nano Letters</i> , 2019 , 19, 5459-5468	11.5	22	
134	Reversible recrystallization process of copper and silver thioacetamidefialide coordination polymers and their basic building blocks. <i>CrystEngComm</i> , 2014 , 16, 8224-8231	3.3	22	
133	The structural diversity triggered by intermolecular interactions between Au(I)S2 groups: aurophilia and beyond. <i>Chemistry - A European Journal</i> , 2012 , 18, 9965-76	4.8	22	
132	Dynamic combinatorial chemistry in a solvothermal process of Cu(I,II) and organosulfur ligands. <i>Dalton Transactions</i> , 2010 , 39, 2280-7	4.3	22	
131	From metal-nucleobase chemistry towards molecular wires. <i>Inorganica Chimica Acta</i> , 2009 , 362, 691-70	162.7	22	
130	Reactivity of Fe3(CO)12 towards thiols containing an Hunsaturated ketone system. <i>Inorganica Chimica Acta</i> , 2003 , 351, 119-122	2.7	22	
129	Synthesis and NMR structural analysis of several orthopalladated complexes of substituted benzo-imidazole, -oxazole and -thiazole and study of two polymorphic crystals. <i>Journal of Organometallic Chemistry</i> , 1996 , 518, 29-36	2.3	22	
128	Dynamically tuned non-classical light emission from atomic defects in hexagonal boron nitride. <i>Communications Physics</i> , 2019 , 2,	5.4	21	
127	Solution-based DNA-templating of sub-10 nm conductive copper nanowires. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9265-9273	7.1	21	

126	Bipyridine-modified oligonucleotides: Aggregation in the presence of metal ions. <i>Inorganica Chimica Acta</i> , 2009 , 362, 985-992	2.7	21
125	Simultaneous N7,O6-binding of guanine to two zinc centers and its possible biological significance. <i>Inorganic Chemistry</i> , 2002 , 41, 4976-7	5.1	21
124	Strong luminescent copper(I) halide coordination polymers and dinuclear complexes with thioacetamide and N,N?-donor ligands. <i>CrystEngComm</i> , 2016 , 18, 1809-1817	3.3	20
123	AuIII binding to C5 of the model nucleobase 1,3-dimethyluracil (1,3-DimeU): Preparation and X-ray crystal structures of trans-K[Au(CN)2Cl(1,3-DimeU)] and of two derivatives. <i>Journal of Organometallic Chemistry</i> , 1998 , 552, 127-134	2.3	20
122	Interguanine hydrogen-bonding patterns in adducts with water and Zn-purine complexes (purine is 9-methyladenine and 9-methylguanine). Unexpected preference of Zn(II) for adenine-N7 over guanine-N7. <i>Journal of Biological Inorganic Chemistry</i> , 2007 , 12, 543-55	3.7	20
121	Antimonene: Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions (Adv. Mater. 30/2016). <i>Advanced Materials</i> , 2016 , 28, 6515	24	20
120	Electrical behaviour of heterobimetallic [MMŒtCS2)4] (MMŒNiPd, NiPt, PdPt) and MMŒ-chain polymers [PtM(EtCS2)4I] (M=Ni, Pd). <i>Chemistry - A European Journal</i> , 2012 , 18, 15476-84	4.8	19
119	Metal-mediated aggregation of DNA comprising 2,2@bipyridine nucleoside, an asymmetrically substituted chiral bidentate ligand. <i>Dalton Transactions</i> , 2011 , 40, 1802-7	4.3	19
118	Stabilization of the non-canonical adenine-adeninium base pair by N(7) coordination of Zn(II). Journal of Inorganic Biochemistry, 2005 , 99, 2226-30	4.2	19
117	Models of putative (AH)G(AH)G nucleobase quartets. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5670-4	16.4	19
117		16.4 3·5	19
	2005, 44, 5670-4 Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. <i>Crystal</i>		
116	2005, 44, 5670-4 Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. <i>Crystal Growth and Design</i> , 2015, 15, 5485-5494 Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. <i>2D Materials</i> ,	3.5	18
116 115	Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. <i>Crystal Growth and Design</i> , 2015 , 15, 5485-5494 Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. <i>2D Materials</i> , 2020 , 7, 025039 Nanoprocessability of a one-dimensional oxalato-bridged cobalt(II) complex with 1,2,4-triazole.	3·5 5·9	18
116 115 114	Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. <i>Crystal Growth and Design</i> , 2015 , 15, 5485-5494 Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. <i>2D Materials</i> , 2020 , 7, 025039 Nanoprocessability of a one-dimensional oxalato-bridged cobalt(II) complex with 1,2,4-triazole. <i>Inorganica Chimica Acta</i> , 2007 , 360, 48-54 Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties. <i>Inorganic</i>	3·5 5·9 2·7	18 18
116 115 114	Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. <i>Crystal Growth and Design</i> , 2015 , 15, 5485-5494 Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. <i>2D Materials</i> , 2020 , 7, 025039 Nanoprocessability of a one-dimensional oxalato-bridged cobalt(II) complex with 1,2,4-triazole. <i>Inorganica Chimica Acta</i> , 2007 , 360, 48-54 Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties. <i>Inorganic Chemistry</i> , 2015 , 54, 10738-47 An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks.	3.5 5.9 2.7 5.1	18 18 18
116 115 114 113	Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. Crystal Growth and Design, 2015, 15, 5485-5494 Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. 2D Materials, 2020, 7, 025039 Nanoprocessability of a one-dimensional oxalato-bridged cobalt(II) complex with 1,2,4-triazole. Inorganica Chimica Acta, 2007, 360, 48-54 Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties. Inorganic Chemistry, 2015, 54, 10738-47 An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks. Nanoscale Research Letters, 2011, 6, 495 Novel Melt-Processable Nanocomposites Based on Isotactic Polypropylene and Carbon Nitride:	3.5 5.9 2.7 5.1	18 18 18 17 17

108	Asymmetric acetylenic thioethers in ruthenium cluster chemistry. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 552-556	2.3	16	
107	Supramolecular Interactions Modulating Electrical Conductivity and Nanoprocessing of Copper-Iodine Double-Chain Coordination Polymers. <i>Inorganic Chemistry</i> , 2018 , 57, 7568-7577	5.1	16	
106	Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. <i>Applied Materials Today</i> , 2016 , 2, 17-23	6.6	15	
105	Some Pictures of Alcoholic Dancing: From Simple to Complex Hydrogen-Bonded Networks Based on Polyalcohols. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4680-4690	3.8	15	
104	Supramolecular assembly of diplatinum species through weak Pt(II)???Pt(II) intermolecular interactions: a combined experimental and computational study. <i>Chemistry - A European Journal</i> , 2012 , 18, 13787-99	4.8	15	
103	Enhanced fluorescence of silver nanoclusters stabilized with branched oligonucleotides. <i>Chemical Communications</i> , 2013 , 49, 4950-2	5.8	15	
102	Ordering phthalocyanine-C60 fullerene conjugates on individual carbon nanotubes. <i>Chemical Communications</i> , 2010 , 46, 4692-4	5.8	15	
101	Activation of CB Bonds in Organosulfur Compounds Containing #Unsaturated Ketone Systems by Carbonylruthenium and -iron Complexes. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 562-5	56 8 3	15	
100	5,5?-Diuracilylspezies aus Uracil und [AuCl4] El Nucleobasen-Dimerisierung durch ein Metall. <i>Angewandte Chemie</i> , 1999 , 111, 2415-2417	3.6	15	
99	Nanofibers generated by self-assembly on surfaces of bimetallic building blocks. <i>Dalton Transactions</i> , 2009 , 7341-3	4.3	14	
98	A bis(9-methyladeninium) complex of Hg(II) with a highly irregular coordination geometry: [Hg(9-MeAH-N7)2(H2O)(NO3)3]ClO4. <i>Inorganica Chimica Acta</i> , 1998 , 267, 87-91	2.7	14	
97	Unusual dimeric Zn(II)-cytosine complexes: new models of the interaction of Zn(II) with DNA and RNA. <i>Journal of Inorganic Biochemistry</i> , 2008 , 102, 203-8	4.2	14	
96	Synthesis and reactivity of iron carbonyl clusters containing alkynethiolate ligands. <i>Inorganica Chimica Acta</i> , 2005 , 358, 1521-1530	2.7	14	
95	Sub-micron spheres of an imine-based covalent organic framework: supramolecular functionalization and water-dispersibility. <i>CrystEngComm</i> , 2017 , 19, 4872-4876	3.3	13	
94	Functionalization of a Few-Layer Antimonene with Oligonucleotides for DNA Sensing. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3625-3633	5.6	13	
93	Structural Diversity in Paddlewheel Dirhodium(II) Compounds through Ionic Interactions: Electronic and Redox Properties. <i>Crystal Growth and Design</i> , 2013 , 13, 4977-4985	3.5	13	
92	Fast and Reversible Intramolecular Cleavage of an Aull Bond in the Spiked-Triangular Metal Complexes [Fe3Au(4,12-C?CtBu)(CO)9(PR3)] (R = Ph, iPr). <i>Organometallics</i> , 2002 , 21, 780-782	3.8	13	
91	Iron carbonyls with bulky thiolate ligands: crystal structures of [Fe2(CO)6(ESC6H2iPr3-2,4,6)2] and (C6H2iPr3-2,4,6)2S2. <i>Inorganica Chimica Acta</i> , 1999 , 284, 14-19	2.7	13	

90	A crystalline and free-standing silver thiocarboxylate thin-film showing high green to yellow luminescence. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 8545-8551	7.1	12
89	Coordination polymers based on diiron tetrakis(dithiolato) bridged by alkali metals, electrical bistability around room temperature, and strong antiferromagnetic coupling. <i>Inorganic Chemistry</i> , 2015 , 54, 2243-52	5.1	12
88	One-Pot Preparation of Mechanically Robust, Transparent, Highly Conductive, and Memristive Metal-Organic Ultrathin Film. <i>ACS Nano</i> , 2018 , 12, 10171-10177	16.7	12
87	Spray drying for making covalent chemistry II: synthesis of covalent-organic framework superstructures and related composites. <i>Chemical Communications</i> , 2017 , 53, 11372-11375	5.8	11
86	Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media. <i>Materials</i> , 2019 , 12,	3.5	11
85	Highly dense nickel hydroxide nanoparticles catalyst electrodeposited from a novel Ni(II) paddlewheel complex. <i>Journal of Catalysis</i> , 2015 , 329, 22-31	7.3	11
84	High Electrical Conductivity of Single Metal-Organic Chains. Advanced Materials, 2018, 30, e1705645	24	11
83	Nanostructured electrochemical detector for the quantification of amino acids related to metabolic diseases. <i>Sensors and Actuators B: Chemical</i> , 2016 , 236, 773-780	8.5	11
82	Unprecedented layered coordination polymers of dithiolene group 10 metals: magnetic and electrical properties. <i>Dalton Transactions</i> , 2016 , 45, 6696-701	4.3	11
81	Group 10 Metal Benzene-1,2-dithiolate Derivatives in the Synthesis of Coordination Polymers Containing Potassium Countercations. <i>Inorganic Chemistry</i> , 2017 , 56, 11810-11818	5.1	11
80	Synthesis and structure of (1,3-dimethyluracil-5-yl) mercury(II) complexes with aromatic nitrogen donor ligands. <i>Inorganica Chimica Acta</i> , 1998 , 282, 237-242	2.7	11
79	A way to obtain cyclopalladation of unsubstituted 2-phenylimidazole derivatives. <i>Journal of Organometallic Chemistry</i> , 1996 , 522, 97-103	2.3	11
78	Electrical bistability around room temperature in an unprecedented one-dimensional coordination magnetic polymer. <i>Inorganic Chemistry</i> , 2013 , 52, 5943-50	5.1	10
77	Cu(I), Co(II) and Fe(II) coordination polymers with pyrazine and benzoate as ligands. Spin crossover, spin canting and metamagnetism phenomena. <i>Dalton Transactions</i> , 2013 , 42, 13453-60	4.3	10
76	Azafullerene-like nanosized clusters. ACS Nano, 2009, 3, 3352-7	16.7	10
75	Covalent deposition of ferritin nanoparticles onto gold surfaces. <i>Nanotechnology</i> , 2008 , 19, 025302	3.4	10
74	Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II) Coordination Polymer and NiAl-Layered Double Hydroxides. <i>Polymers</i> , 2015 , 8,	4.5	10
73	Tunable Graphene Electronics with Local Ultrahigh Pressure. <i>Advanced Functional Materials</i> , 2019 , 29, 1806715	15.6	9

72	Alkynethiolate ligands in the syntheses of iron carbonyl derivatives. Crystal structure of [(店-C5H5)Fe(CO)2(SC?CSiMe3)]. <i>Journal of Organometallic Chemistry</i> , 2002 , 649, 21-24	2.3	9
71	Dynamic combinatorial chemistry in a solvothermal process between nickel(II), halides and organosulphur ligands. <i>RSC Advances</i> , 2013 , 3, 18406	3.7	8
70	Reversible Solvent-Exchange-Driven Transformations in Multifunctional Coordination Polymers Based on Copper-Containing Organosulfur Ligands. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3879-3887	2.3	8
69	S-S bond reactivity in metal-perthiocarboxylato compounds. <i>Dalton Transactions</i> , 2010 , 39, 1511-8	4.3	8
68	Exfoliation of Alpha-Germanium: A Covalent Diamond-Like Structure. Advanced Materials, 2021, 33, e20	06β26	5 8
67	Electrophoretic deposition of antimonene for photoelectrochemical applications. <i>Applied Materials Today</i> , 2020 , 20, 100714	6.6	7
66	Fast and efficient direct formation of size-controlled nanostructures of coordination polymers based on copper(i)-iodine bearing functional pyridine terminal ligands. <i>Dalton Transactions</i> , 2018 , 47, 5607-5613	4.3	7
65	Structural Diversity of Compounds Based on Iron-Dithiolene with Sodium or Potassium Complexes. <i>Crystal Growth and Design</i> , 2016 , 16, 5466-5478	3.5	7
64	New insights into the chemistry of di- and trimetallic iron dithiolene derivatives. Structural, MBsbauer, magnetic, electrochemical and theoretical studies. <i>Dalton Transactions</i> , 2014 , 43, 13187-95	4.3	7
63	The isolation of single MMX chains from solution: unravelling the assembly-disassembly process. <i>Chemistry - A European Journal</i> , 2013 , 19, 15518-29	4.8	7
62	Carbon nanotubes growth on silicon nitride substrates. <i>Materials Letters</i> , 2011 , 65, 1479-1481	3.3	7
61	Hollow C3N4 nanoclusters from first principles. <i>Physical Review B</i> , 2010 , 82,	3.3	7
60	Cunning defects: emission control by structural point defects on Cu(I)I double chain coordination polymers. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1448-1458	7.1	7
59	Introduction to Covalent Organic Frameworks: An Advanced Organic Chemistry Experiment. <i>Journal of Chemical Education</i> , 2019 , 96, 1745-1751	2.4	6
58	Supramolecular attachment of metalloporphyrins to graphene oxide and its pyridine-containing derivative. <i>Chemistry - A European Journal</i> , 2013 , 19, 10463-7	4.8	6
57	Supramolecular Chemistry of Metal Nucleobase Complexes 95-132		6
56	Anodic aluminium oxide membranes used for the growth of carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 6396-400	1.3	6
55	Palladium(II) 4,5-Diphenylimidazole Cyclometalated Complexes: DNA Interaction. <i>Applied Organometallic Chemistry</i> , 1997 , 11, 491-497	3.1	6

54	Self-Assembly of Supramolecular Architectures Using Chlorotetra(Pyrrole-2-Carboxylato)Diruthenium Molecules as Building Blocks. <i>Journal of Cluster Science</i> , 2008 , 19, 219-230	3	6
53	Ultralarge Free-Standing Imine-Based Covalent Organic Framework Membranes Fabricated via Compression <i>Advanced Science</i> , 2022 , e2104643	13.6	6
52	Synergistic Doping and Surface Decoration of Carbon Nitride Macrostructures by Single Crystal Design. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1868-1875	6.1	6
51	Micro and Nano Smart Composite Films Based on Copper-Iodine Coordination Polymer as Thermochromic Biocompatible Sensors. <i>Polymers</i> , 2019 , 11,	4.5	5
50	Gas-Solid Heterogeneous Postsynthetic Modification of Imine-Based Covalent Organic Frameworks. <i>Chemistry - A European Journal</i> , 2020 , 26, 6495-6498	4.8	5
49	Direct Formation of Sub-Micron and Nanoparticles of a Bioinspired Coordination Polymer Based on Copper with Adenine. <i>Polymers</i> , 2017 , 9,	4.5	5
48	Stability and electronic structure of M-DNA: Role of metal position. <i>Physical Review B</i> , 2011 , 84,	3.3	5
47	Synthesis and crystal structure of a diplatinum cyclopentadienyldiphenylphosphine sulphide bridged complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 1-8	2.7	5
46	Tridentate Coordination Modes of Functionalized Titanocene Thiolates. Crystal Structure of [(eta(5)-C(5)H(4)SiMe(3))Ti(&mgr-eta(5):kappa-P-C(5)H(4)PPh(2))(&mgr-SPh)(2)W(CO)(3)]. <i>Inorganic Chemistry</i> , 1998 , 37, 6684-6689	5.1	5
45	Crystallization Induced Enhanced Emission in Two New Zn(II) and Cd(II) Supramolecular Coordination Complexes with the 1-(3,4-Dimethylphenyl)-5-Methyl-1-1,2,3-Triazole-4-Carboxylate Ligand. <i>Polymers</i> , 2020 , 12,	4.5	5
44	Rhodium and copper 6-methylpicolinate complexes. Structural diversity and supramolecular interaction study. <i>Inorganica Chimica Acta</i> , 2016 , 453, 574-582	2.7	5
43	Synthesis of metal-free lightweight materials with sequence-encoded properties. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8752-8760	13	5
42	Reversible transformation between Cu(I)-thiophenolate coordination polymers displaying luminescence and electrical properties. <i>CrystEngComm</i> , 2019 , 21, 3232-3239	3.3	4
41	On the road to MMOX polymers: redox properties of heterometallic NiIIIPt paddlewheel complexes. <i>Inorganic Chemistry</i> , 2014 , 53, 10553-62	5.1	4
40	On-surface self-organization of a robust metal-organic cluster based on copper(I) with chloride and organosulphur ligands. <i>Chemical Communications</i> , 2015 , 51, 3243-6	5.8	4
39	Substituent and noncovalent interaction effects in the reactivity of purine derivatives with tetracarboxylato-dirhodium(II) units. Rationalization of a rare binding mode via N3. <i>Inorganic Chemistry</i> , 2013 , 52, 2174-81	5.1	4
38	Dependence of the single walled carbon nanotube length with growth temperature and catalyst density by chemical vapor deposition. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2830-5	1.3	4
37	Supramolecular interactions in Cobalt(II)flucleobases complexes: A methyl matter. <i>Inorganica Chimica Acta</i> , 2016 , 452, 251-257	2.7	4

(2021-2019)

36	Copper dithiolene [Cu(SC6H2Cl2S)2] Linits connected to alkaline/copper complexes: from ionic assemblies to discrete molecular entities and coordination polymers. <i>CrystEngComm</i> , 2019 , 21, 957-963	3.3	3	
35	A bioinspired metal-organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition. <i>Nanoscale</i> , 2020 , 12, 14699-14707	7.7	3	
34	Unveiling the Local Structure of Palladium Loaded into Imine-Linked Layered Covalent Organic Frameworks for Cross-Coupling Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 13113-13120	3.6	3	
33	Comparative Studies of Oxidation Processes on Group 10 Metals Dithiolene Derivatives in the Formation of Coordination Polymers. <i>Crystal Growth and Design</i> , 2018 , 18, 2486-2494	3.5	3	
32	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. <i>Journal of Visualized Experiments</i> , 2017 ,	1.6	3	
31	SB Bond Activation in Multi-Copper Aggregates Containing Perthiocarboxylato Ligands. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4044-4054	2.3	3	
30	Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles. <i>Journal of Nanomaterials</i> , 2010 , 2010, 1-7	3.2	3	
29	Nanostructures on surfaces of the metalorganic compound {Fe2(CO)6[µ-S2C6H2(OH)2]} and its potential as catalyst precursor for the synthesis of carbon nanotubes. <i>Dalton Transactions</i> , 2011 , 40, 3109-11	4.3	3	
28	Covalent organic frameworks based on electroactive naphthalenediimide as active electrocatalysts toward oxygen reduction reaction. <i>Applied Materials Today</i> , 2022 , 26, 101384	6.6	3	
27	Operando Methods for the Mechanistic Elucidation of an Electrochemically Driven Structural Transformation. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12377-12383	3.8	3	
26	Exfoliated graphite flakes as soft-electrodes for precisely contacting nanoobjects. <i>2D Materials</i> , 2015 , 2, 035008	5.9	2	
25	Synthesis and crystal structures of ion-pairs based on anionic iron-dithiolenes and alkylammonium as countercation. <i>Journal of Molecular Structure</i> , 2019 , 1196, 323-331	3.4	2	
24	Electrochemically generated nanoparticles of halogen-bridged mixed-valence binuclear metal complex chains. <i>Chemistry - A European Journal</i> , 2014 , 20, 7107-15	4.8	2	
23	Supramolecular architectures based on 6-purinethione complexes. <i>Inorganica Chimica Acta</i> , 2014 , 417, 142-147	2.7	2	
22	Following the light: 3D-printed COF@poly(2-hydroxyethyl methacrylate) dual emissive composite with response to polarity and acidity. <i>Journal of Materials Chemistry A</i> ,	13	2	
21	Pyrimidine Nucleobases as Versatile and Multidentate Ligands for Heavy Metal Ions. Significance of Metal Binding to the C(5) Sites of Uracil and Cytosine 1997 , 511-520		2	
20	Direct Visualization and Effects of Atomic-Scale Defects on the Optoelectronic Properties of Hexagonal Boron Nitride. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001177	6.4	2	
19	A Perspective on the Application of Covalent Organic Frameworks for Detection and Water Treatment. <i>Nanomaterials</i> , 2021 , 11,	5.4	2	

18	Fluorescent Carbon Nitride Macrostructures Derived from Triazine-Based Cocrystals. <i>Advanced Optical Materials</i> , 2021 , 9, 2100683	8.1	2
17	Rational Design of Copper(II)-Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 36948-36957	9.5	2
16	Copper(II)II hymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. <i>Angewandte Chemie</i> , 2017 , 129, 1007-1011	3.6	1
15	Synthesis and structural characterization of transition metal dithiolene derivatives containing divalent metals as counter-cations. <i>CrystEngComm</i> , 2019 , 21, 1423-1432	3.3	1
14	The role of defects in the properties of functional coordination polymers. <i>Advances in Inorganic Chemistry</i> , 2020 , 76, 73-119	2.1	1
13	Structural Factors Governing the Formation of Extended Structures in Group 10 and 12 Metal-Dithiolenes. <i>Crystal Growth and Design</i> , 2020 , 20, 4573-4584	3.5	1
12	From Layered MOFs to Structuring at the Meso-/Macroscopic Scale 2018 , 81-121		1
11	REktitelbild: Few-Layer Antimonene by Liquid-Phase Exfoliation (Angew. Chem. 46/2016). <i>Angewandte Chemie</i> , 2016 , 128, 14686-14686	3.6	1
10	Metalligand Systems for Construction of One-Dimensional Nanostructures 2013 , 19-40		1
9	Preparation of high-quality few-layers bismuthene hexagons. <i>Applied Materials Today</i> , 2022 , 26, 101360	6.6	1
8	Layered Copper-Metallated Covalent Organic Frameworks for Huisgen Reactions. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied</i>	9.5	1
7	Continuous-Flow Synthesis of High-Quality Few-Layer Antimonene Hexagons. <i>Advanced Functional Materials</i> , 2021 , 31, 2101616	15.6	1
6	Macroscopic Ultralight Aerogel Monoliths of Imine-based Covalent Organic Frameworks. <i>Angewandte Chemie</i> , 2021 , 133, 14088-14096	3.6	1
5	Heterobimetallic three-dimensional 4d-4f coordination polymers based on 5-methyl-1-(pyridyn-4-ylmethyl)-1H-1,2,3-triazole-3,4-dicarboxylate. <i>Journal of Solid State Chemistry</i> , 2022 , 310, 123027	3.3	1
4	Cu(I) Iodide coordination polymers with aromatic thioamides. <i>CrystEngComm</i> , 2020 , 22, 5447-5452	3.3	O
3	Few-layer antimonene electrical properties. <i>Applied Materials Today</i> , 2021 , 24, 101132	6.6	O
2	Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer (Adv. Mater. 15/2013). <i>Advanced Materials</i> , 2013 , 25, 2140-2140	24	
1	A Nanostructured Cu(II) Coordination Polymer Based on Alanine as a Trifunctional Mimic Enzyme and Efficient Composite in the Detection of Sphingobacteria <i>Bioinorganic Chemistry and Applications</i> , 2022 , 2022, 8788221	4.2	