List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1211042/publications.pdf Version: 2024-02-01

FELLY ZAMODA

#	Article	IF	CITATIONS
1	2D materials: to graphene and beyond. Nanoscale, 2011, 3, 20-30.	5.6	1,395
2	Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews, 2016, 45, 5635-5671.	38.1	983
3	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	38.1	697
4	Electrical conductive coordination polymers. Chemical Society Reviews, 2012, 41, 115-147.	38.1	546
5	Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Advanced Materials, 2016, 28, 6332-6336.	21.0	444
6	Few‣ayer Antimonene by Liquidâ€Phase Exfoliation. Angewandte Chemie - International Edition, 2016, 55, 14345-14349.	13.8	346
7	Recent Progress on Antimonene: A New Bidimensional Material. Advanced Materials, 2018, 30, 1703771.	21.0	245
8	Covalent organic framework nanosheets: preparation, properties and applications. Chemical Society Reviews, 2020, 49, 2291-2302.	38.1	245
9	Delamination of Layered Covalent Organic Frameworks. Small, 2011, 7, 1207-1211.	10.0	234
10	Single layers of a multifunctional laminar Cu(i,ii) coordination polymer. Chemical Communications, 2010, 46, 3262.	4.1	225
11	Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly onductive Graphene Monolayers. Advanced Materials, 2009, 21, 4683-4686.	21.0	223
12	lonic Conductivity and Potential Application for Fuel Cell of a Modified Imine-Based Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 10079-10086.	13.7	198
13	Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(<scp>ii</scp>). Journal of Materials Chemistry A, 2017, 5, 17973-17981.	10.3	186
14	Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. Advanced Energy Materials, 2018, 8, 1702606.	19.5	153
15	Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework. Journal of the American Chemical Society, 2018, 140, 12922-12929.	13.7	147
16	Solventâ€Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer. Advanced Materials, 2013, 25, 2141-2146.	21.0	146
17	Mechanical and optical properties of ultralarge flakes of a metal–organic framework with molecular thickness. Chemical Science, 2015, 6, 2553-2558.	7.4	141
18	Processing of covalent organic frameworks: an ingredient for a material to succeed. Chemical Society Reviews, 2019, 48, 4375-4386.	38.1	139

#	Article	IF	CITATIONS
19	Direct On‧urface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature. Chemistry - A European Journal, 2015, 21, 10666-10670.	3.3	131
20	One-dimensional coordination polymers on surfaces: towards single molecule devices. Chemical Society Reviews, 2010, 39, 4220.	38.1	124
21	Metal-Stabilized Rare Tautomers of Nucleobases. 6.â€Imino Tautomer of Adenine in a Mixed-Nucleobase Complex of Mercury(II). Inorganic Chemistry, 1997, 36, 1583-1587.	4.0	116
22	Copper(<scp>i</scp>)–iodide cluster structures as functional and processable platform materials. Chemical Society Reviews, 2021, 50, 4606-4628.	38.1	116
23	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chemical Communications, 2016, 52, 9212-9215.	4.1	109
24	MasterChem: cooking 2D-polymers. Chemical Communications, 2016, 52, 4113-4127.	4.1	104
25	Coordination polymers with nucleobases: From structural aspects to potential applications. Coordination Chemistry Reviews, 2014, 276, 34-58.	18.8	101
26	Electrical Conductivity and Luminescence in Coordination Polymers Based on Copper(I)-Halides and Sulfur-Pyrimidine Ligands. Inorganic Chemistry, 2012, 51, 718-727.	4.0	97
27	A Conducting Coordination Polymer Based on Assembled Cu ₉ Cages. Inorganic Chemistry, 2008, 47, 9128-9130.	4.0	95
28	Highly conductive self-assembled nanoribbons of coordination polymers. Nature Nanotechnology, 2010, 5, 110-115.	31.5	94
29	Tuning delamination of layered covalent organic frameworks through structural design. Chemical Communications, 2012, 48, 7976.	4.1	92
30	Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene. Journal of Materials Chemistry A, 2017, 5, 4343-4351.	10.3	91
31	Microwave assisted hydrothermal synthesis of a novel Cul-sulfate-pyrazine MOF. Inorganic Chemistry Communication, 2007, 10, 921-924.	3.9	85
32	An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis, 2017, 7, 1015-1024.	11.2	83
33	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie - International Edition, 2017, 56, 14389-14394.	13.8	83
34	Formation of a surface covalent organic framework based on polyester condensation. Chemical Communications, 2012, 48, 6779.	4.1	82
35	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie - International Edition, 2019, 58, 9512-9516.	13.8	79
36	Perspectives of the smart Cu-lodine coordination polymers: A portage to the world of new nanomaterials and composites. Coordination Chemistry Reviews, 2019, 381, 65-78.	18.8	75

#	Article	IF	CITATIONS
37	Few‣ayer Antimonene by Liquidâ€Phase Exfoliation. Angewandte Chemie, 2016, 128, 14557-14561.	2.0	74
38	From Coordination Polymer Macrocrystals to Nanometric Individual Chains. Advanced Materials, 2005, 17, 1761-1765.	21.0	73
39	Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. Chemical Communications, 2019, 55, 1382-1385.	4.1	73
40	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 13969-13977.	13.8	73
41	Highly Conductive Supramolecular Nanostructures of a Covalently Linked Phthalocyanine–C ₆₀ Fullerene Conjugate. Angewandte Chemie - International Edition, 2008, 47, 2026-2031.	13.8	72
42	Palladium(II) compounds of putrescine and spermine. Synthesis, characterization, and DNA-binding and antitumor properties. Journal of Inorganic Biochemistry, 1993, 52, 37-49.	3.5	69
43	Studies on bifunctional Fe(<scp>ii</scp>)-triazole spin crossover nanoparticles: time-dependent luminescence, surface grafting and the effect of a silica shell and hydrostatic pressure on the magnetic properties. Journal of Materials Chemistry C, 2015, 3, 7819-7829.	5.5	69
44	Green synthesis of imine-based covalent organic frameworks in water. Chemical Communications, 2020, 56, 6704-6707.	4.1	68
45	Biomimetic Synthesis of Sub-20 nm Covalent Organic Frameworks in Water. Journal of the American Chemical Society, 2020, 142, 3540-3547.	13.7	68
46	Unprecedented Centimeter‣ong Carbon Nitride Needles: Synthesis, Characterization and Applications. Small, 2018, 14, e1800633.	10.0	64
47	Graphene Monolayers: Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly-Conductive Graphene Monolayers (Adv. Mater. 46/2009). Advanced Materials, 2009, 21, n/a-n/a.	21.0	63
48	Optical Identification of Few-Layer Antimonene Crystals. ACS Photonics, 2017, 4, 600-605.	6.6	62
49	Geometry and electronic structure ofM-DNA (M=Zn2+,Co2+, andFe2+). Physical Review B, 2006, 73, .	3.2	60
50	Intrinsic electrical conductivity of nanostructured metal-organic polymer chains. Nature Communications, 2013, 4, 1709.	12.8	60
51	Confining Functional Nanoparticles into Colloidal Imineâ€Based COF Spheres by a Sequential Encapsulation–Crystallization Method. Chemistry - A European Journal, 2017, 23, 8623-8627.	3.3	58
52	Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chemical Communications, 2020, 56, 1267-1270.	4.1	56
53	Towards Molecular Wires Based on Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2009, 2009, 2885-2896.	2.0	55
54	Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties. Journal of Materials Chemistry A, 2019, 7, 22475-22486.	10.3	54

#	Article	IF	CITATIONS
55	Design and Non-Covalent DNA Binding of Platinum(II) Metallacalix[4]arenes. Chemistry - A European Journal, 2007, 13, 5075-5081.	3.3	53
56	Reversible Thermochromic Polymeric Thin Films Made of Ultrathin 2D Crystals of Coordination Polymers Based on Copper(I)â€Thiophenolates. Advanced Functional Materials, 2018, 28, 1704040.	14.9	53
57	Scanning Probe Microscopy Characterization of Single Chains Based on a One-Dimensional Oxalato-Bridged Manganese(II) Complex with 4-Aminotriazole. Inorganic Chemistry, 2005, 44, 8343-8348.	4.0	52
58	Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One-Dimensional Coordination Polymers:  Synthesis and Scanning Probe Microscopy Characterization. Inorganic Chemistry, 2006, 45, 7642-7650.	4.0	52
59	Unveiling the Local Structure of Palladium Loaded into Imineâ€Linked Layered Covalent Organic Frameworks for Crossâ€Coupling Catalysis. Angewandte Chemie - International Edition, 2020, 59, 13013-13020.	13.8	49
60	Palladium(II) salt and complexes of spermidine with a six-member chelate ring. Synthesis, characterization, and initial DNA-binding and antitumor studies. Journal of Inorganic Biochemistry, 1992, 46, 267-279.	3.5	48
61	Coordination Polymers for Nanoelectronics. Advanced Materials, 2011, 23, 5311-5317.	21.0	48
62	Metal–Organic Frameworks Containing Missingâ€Linker Defects Leading to High Hydroxideâ€lon Conductivity. Chemistry - A European Journal, 2016, 22, 1646-1651.	3.3	48
63	Conductive Nanostructures of MMX Chains. Advanced Functional Materials, 2010, 20, 1451-1457.	14.9	45
64	Synthesis of Designed Conductive One-Dimensional Coordination Polymers of Ni(II) with 6-Mercaptopurine and 6-Thioguanine. Inorganic Chemistry, 2009, 48, 7931-7936.	4.0	44
65	Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modified electrodes. Sensors and Actuators B: Chemical, 2016, 222, 331-338.	7.8	44
66	Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors. Chemical Science, 2018, 9, 8000-8010.	7.4	44
67	Direct evidence of nanowires formation from a Cu(i) coordination polymer. Chemical Communications, 2008, , 945-947.	4.1	43
68	Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4â€Hydroxythiophenol. Chemistry - A European Journal, 2016, 22, 18027-18035.	3.3	43
69	Multistimuli Response Micro―and Nanolayers of a Coordination Polymer Based on Cu ₂ I ₂ Chains Linked by 2â€Aminopyrazine. Small, 2017, 13, 1700965.	10.0	43
70	MMX polymer chains on surfaces. Chemical Communications, 2007, , 1591-1593.	4.1	42
71	Multifunctional Copper(I) Coordination Polymers with Aromatic Mono- and Ditopic Thioamides. Inorganic Chemistry, 2019, 58, 3290-3301.	4.0	42
72	Metallicity in Individual MMX Chains. Journal of the American Chemical Society, 2008, 130, 5552-5562.	13.7	41

#	Article	IF	CITATIONS
73	Organization of Coordination Polymers on Surfaces by Direct Sublimation. Advanced Materials, 2009, 21, 2025-2028.	21.0	41
74	Cyclometallated complexes of Pd(II) and Pt(II) with 2-phenylimidazoline. Journal of Organometallic Chemistry, 1996, 506, 149-154.	1.8	40
75	Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. Chemical Science, 2015, 6, 1949-1958.	7.4	40
76	5,5′-Diuracilyl Species from Uracil and [AuCl4]â^': Nucleobase Dimerization Brought about by a Metal. Angewandte Chemie - International Edition, 1999, 38, 2274-2275.	13.8	39
77	Electrical Conductivity in Platinum-Dimer Columns. Inorganic Chemistry, 2008, 47, 9736-9738.	4.0	39
78	A photoresponsive graphene oxide–C ₆₀ conjugate. Chemical Communications, 2014, 50, 9053.	4.1	39
79	AFM Manipulation of Gold Nanowires To Build Electrical Circuits. Nano Letters, 2019, 19, 5459-5468.	9.1	39
80	Imine-Linked Covalent Organic Framework with a Naphthalene Moiety as a Sensitive Phosphate Ion Sensing. ACS Applied Materials & Interfaces, 2022, 14, 22398-22406.	8.0	39
81	(1,3-Dimethyluracil-5-yl)mercury(II):Â Preparative, Structural, and NMR Spectroscopic Studies of an Analog of CH3HgII. Inorganic Chemistry, 1996, 35, 4858-4864.	4.0	38
82	Semiconductive and Magnetic One-Dimensional Coordination Polymers of Cu(II) with Modified Nucleobases. Inorganic Chemistry, 2013, 52, 11428-11437.	4.0	38
83	Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Liâ€5 Batteries. Chemistry - A European Journal, 2019, 25, 12394-12404.	3.3	37
84	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie, 2019, 131, 9612-9616.	2.0	36
85	Reversible stimulus-responsive Cu(<scp>i</scp>) iodide pyridine coordination polymer. Chemical Communications, 2015, 51, 14306-14309.	4.1	35
86	Dynamically tuned non-classical light emission from atomic defects in hexagonal boron nitride. Communications Physics, 2019, 2, .	5.3	35
87	3D Printing of a Thermo―and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials, 2019, 29, 1808424.	14.9	35
88	Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. 2D Materials, 2020, 7, 025039.	4.4	33
89	Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives. Chemistry - A European Journal, 2015, 21, 17282-17292.	3.3	31
90	Ultralarge Free‧tanding Imineâ€Based Covalent Organic Framework Membranes Fabricated via Compression. Advanced Science, 2022, 9, e2104643.	11.2	31

#	Article	IF	CITATIONS
91	Pd(II) and Pt(II) Complexes of 2-Phenyl- and 2-Benzyl-imidazoline: Synthesis, Structural Characterization, DNA Modification andin vitro Antileukaemic Activity. Applied Organometallic Chemistry, 1997, 11, 659-666.	3.5	30
92	2D/2D Graphitic Carbon Nitride/Antimonene Heterostructure: Structural Characterization and Application in Photocatalysis. Advanced Sustainable Systems, 2019, 3, 1800138.	5.3	30
93	Hexanuclear hydrolysis products of the uracil nucleobase complex (1,3-dimethyluracil-5-yl)mercury(ii) nitrate. Chemical Communications, 1997, , 485-486.	4.1	29
94	Crystal structures of a protonated form of trans-[Pt(NH3)2(mura)2] and of a derivative containing three different metal ions, Pt2+, Ag+, and Na+ (muraâ€=â€1-methyluracilate). Major difference in packing between heteronuclear pyrimidine nucleobase complexes of cis- and trans-(NH3)2PtII. Journal of the Chemical Society Dalton Transactions, 1999, , 175-182.	1.1	28
95	Time-Dependence Structures of Coordination Network Wires in Solution. ACS Nano, 2008, 2, 2051-2056.	14.6	28
96	Patterned conductive nanostructures from reversible self-assembly of 1D coordination polymer. Chemical Science, 2012, 3, 2047.	7.4	28
97	Reversible recrystallization process of copper and silver thioacetamide–halide coordination polymers and their basic building blocks. CrystEngComm, 2014, 16, 8224-8231.	2.6	28
98	Strong luminescent copper(<scp>i</scp>) halide coordination polymers and dinuclear complexes with thioacetamide and N,N′-donor ligands. CrystEngComm, 2016, 18, 1809-1817.	2.6	28
99	Uracil grafted imine-based covalent organic framework for nucleobase recognition. Chemical Communications, 2018, 54, 8729-8732.	4.1	28
100	Structural models for the interaction of Cd(II) with DNA: trans-[Cd(9-RGH-N7)2(H2O)4]2+. Journal of Inorganic Biochemistry, 2005, 99, 1540-1547.	3.5	27
101	Coordination Chemistry of 6-Thioguanine Derivatives with Cobalt: Toward Formation of Electrical Conductive One-Dimensional Coordination Polymers. Inorganic Chemistry, 2013, 52, 5290-5299.	4.0	27
102	Exfoliation of Alphaâ€Germanium: A Covalent Diamondâ€Like Structure. Advanced Materials, 2021, 33, e2006826.	21.0	27
103	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie, 2017, 129, 14581-14586.	2.0	26
104	Functionalization of a Few-Layer Antimonene with Oligonucleotides for DNA Sensing. ACS Applied Nano Materials, 2020, 3, 3625-3633.	5.0	26
105	Unexpected multiple bond cleavage and rearrangement of organosulfide ligands in the presence of Cu(ii) assisted by solvothermal and solvothermal-microwave conditions. Dalton Transactions, 2011, 40, 847-852.	3.3	25
106	Synthesis and NMR structural analysis of several orthopalladated complexes of substituted benzo-imidazole, -oxazole and -thiazole and study of two polymorphic crystals. Journal of Organometallic Chemistry, 1996, 518, 29-36.	1.8	24
107	Design of molecular wires based on one-dimensional coordination polymers. Applied Physics Letters, 2007, 90, 193107.	3.3	24
108	Solution-based DNA-templating of sub-10 nm conductive copper nanowires. Journal of Materials Chemistry C, 2014, 2, 9265-9273.	5.5	24

#	Article	IF	CITATIONS
109	Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie - International Edition, 2017, 56, 987-991.	13.8	24
110	Aulll binding to C5 of the model nucleobase 1,3-dimethyluracil (1,3-DimeU): Preparation and X-ray crystal structures of trans-K[Au(CN)2Cl(1,3-DimeUâ^')] and of two derivatives. Journal of Organometallic Chemistry, 1998, 552, 127-134.	1.8	23
111	Simultaneous N7,06-Binding of Guanine to Two Zinc Centers and Its Possible Biological Significance. Inorganic Chemistry, 2002, 41, 4976-4977.	4.0	23
112	An unusual triple parallel interpenetrated 2D Cu-polymer, with a 3D triple interpenetration via H-bonding. CrystEngComm, 2007, 9, 987.	2.6	23
113	Nanoprocessability of a one-dimensional oxalato-bridged cobalt(II) complex with 1,2,4-triazole. Inorganica Chimica Acta, 2007, 360, 48-54.	2.4	23
114	Dynamic combinatorial chemistry in a solvothermal process of Cu(i,ii) and organosulfur ligands. Dalton Transactions, 2010, 39, 2280.	3.3	23
115	Antimonene: Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions (Adv. Mater.) Tj ETQq1	1.0.7843 21.0	14 rgBT /O
116	Reactivity of Fe3(CO)12 towards thiols containing an α,β-unsaturated ketone system. Inorganica Chimica Acta, 2003, 351, 119-122.	2.4	22
117	From metal-nucleobase chemistry towards molecular wires. Inorganica Chimica Acta, 2009, 362, 691-706.	2.4	22
118	The Structural Diversity Triggered by Intermolecular Interactions between Au ^I S ₂ Groups: Aurophilia and Beyond. Chemistry - A European Journal, 2012, 18, 9965-9976.	3.3	22
119	Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. Crystal Growth and Design, 2015, 15, 5485-5494.	3.0	22
120	Supramolecular Interactions Modulating Electrical Conductivity and Nanoprocessing of Copper–Iodine Double-Chain Coordination Polymers. Inorganic Chemistry, 2018, 57, 7568-7577.	4.0	22
121	Bipyridine-modified oligonucleotides: Aggregation in the presence of metal ions. Inorganica Chimica Acta, 2009, 362, 985-992.	2.4	21
122	Metal-mediated aggregation of DNA comprising 2,2′-bipyridine nucleoside, an asymmetrically substituted chiral bidentate ligand. Dalton Transactions, 2011, 40, 1802.	3.3	21
123	Interguanine hydrogen-bonding patterns in adducts with water and Zn–purine complexes (purine is) Tj ETQq1 I Journal of Biological Inorganic Chemistry, 2007, 12, 543-555.	0.78431 2.6	4 rgBT /Ove 20
124	Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media. Materials, 2019, 12, 1974.	2.9	20
125	Stabilization of the non-canonical adenine–adeninium base pair by N(7) coordination of Zn(II). Journal of Inorganic Biochemistry, 2005, 99, 2226-2230.	3.5	19
126	Models of Putative (AH)G(AH)G Nucleobase Quartets. Angewandte Chemie - International Edition, 2005, 44, 5670-5674.	13.8	19

#	Article	IF	CITATIONS
127	Nuclearity control in gold dithiocarboxylato compounds. CrystEngComm, 2010, 12, 2332.	2.6	19
128	Electrical Behaviour of Heterobimetallic [MM′(EtCS ₂) ₄] (MM′=NiPd, NiPt, PdPt) and MM′Xâ€Chain Polymers [PtM(EtCS ₂) ₄ 1] (M=Ni, Pd). Chemistry - A European Journal, 2012, 18, 15476-15484.	3.3	19
129	Halo and Pseudohalo Cu(l)-Pyridinato Double Chains with Tunable Physical Properties. Inorganic Chemistry, 2015, 54, 10738-10747.	4.0	19
130	An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks. Nanoscale Research Letters, 2011, 6, 495.	5.7	18
131	Some Pictures of Alcoholic Dancing: From Simple to Complex Hydrogen-Bonded Networks Based on Polyalcohols. Journal of Physical Chemistry C, 2013, 117, 4680-4690.	3.1	18
132	Novel Melt-Processable Nanocomposites Based on Isotactic Polypropylene and Carbon Nitride: Morphology, Crystallization, and Dynamic Mechanical Properties. Soft Materials, 2010, 8, 407-425.	1.7	17
133	Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. Applied Materials Today, 2016, 2, 17-23.	4.3	17
134	Asymmetric acetylenic thioethers in ruthenium cluster chemistry. Journal of Organometallic Chemistry, 2004, 689, 552-556.	1.8	16
135	Unusual Dimeric Zn(II)-cytosine complexes: New models of the interaction of Zn(II) with DNA and RNA. Journal of Inorganic Biochemistry, 2008, 102, 203-208.	3.5	16
136	Enhanced fluorescence of silver nanoclusters stabilized with branched oligonucleotides. Chemical Communications, 2013, 49, 4950.	4.1	16
137	Sub-micron spheres of an imine-based covalent organic framework: supramolecular functionalization and water-dispersibility. CrystEngComm, 2017, 19, 4872-4876.	2.6	16
138	A Perspective on the Application of Covalent Organic Frameworks for Detection and Water Treatment. Nanomaterials, 2021, 11, 1651.	4.1	16
139	A bis(9-methyladeninium) complex of Hg(II) with a highly irregular coordination geometry: [Hg(9-MeAH-N7)2(H2O)(NO3)3]ClO4. Inorganica Chimica Acta, 1998, 267, 87-91.	2.4	15
140	Fast and Reversible Intramolecular Cleavage of an Auâ^'C Bond in the Spiked-Triangular Metal Complexes [Fe3Au(μ4,η2-C⋮CtBu)(CO)9(PR3)] (R = Ph,iPr). Organometallics, 2002, 21, 780-782.	2.3	15
141	Activation of Câ^'S Bonds in Organosulfur Compounds Containing α,β-Unsaturated Ketone Systems by Carbonylruthenium and -iron Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 562-568.	2.0	15
142	Synthesis and reactivity of iron carbonyl clusters containing alkynethiolate ligands. Inorganica Chimica Acta, 2005, 358, 1521-1530.	2.4	15
143	Ordering phthalocyanine–C60 fullerene conjugates on individual carbon nanotubes. Chemical Communications, 2010, 46, 4692.	4.1	15
144	Supramolecular Assembly of Diplatinum Species through Weak Pt ^{II} â‹â‹â‹Pt ^{II} Intermolecular Interactions: A Combined Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 13787-13799.	3.3	15

#	Article	IF	CITATIONS
145	A crystalline and free-standing silver thiocarboxylate thin-film showing high green to yellow luminescence. Journal of Materials Chemistry C, 2016, 4, 8545-8551.	5.5	15
146	Nanostructured electrochemical detector for the quantification of amino acids related to metabolic diseases. Sensors and Actuators B: Chemical, 2016, 236, 773-780.	7.8	15
147	Spray drying for making covalent chemistry II: synthesis of covalent–organic framework superstructures and related composites. Chemical Communications, 2017, 53, 11372-11375.	4.1	15
148	One-Pot Preparation of Mechanically Robust, Transparent, Highly Conductive, and Memristive Metal–Organic Ultrathin Film. ACS Nano, 2018, 12, 10171-10177.	14.6	15
149	Tunable Graphene Electronics with Local Ultrahigh Pressure. Advanced Functional Materials, 2019, 29, 1806715.	14.9	15
150	Following the light: 3D-printed COF@poly(2-hydroxyethyl methacrylate) dual emissive composite with response to polarity and acidity. Journal of Materials Chemistry A, 2022, 10, 4634-4643.	10.3	15
151	Iron carbonyls with bulky thiolate ligands: crystal structures of [Fe2(CO)6(μ-SC6H2-2,4,6)2] and (C6H2-2,4,6)2S2. Inorganica Chimica Acta, 1999, 284, 14-19.	2.4	14
152	Nanofibers generated by self-assembly on surfaces of bimetallic building blocks. Dalton Transactions, 2009, , 7341.	3.3	14
153	Structural Diversity in Paddlewheel Dirhodium(II) Compounds through Ionic Interactions: Electronic and Redox Properties. Crystal Growth and Design, 2013, 13, 4977-4985.	3.0	14
154	Coordination Polymers Based on Diiron Tetrakis(dithiolato) Bridged by Alkali Metals, Electrical Bistability around Room Temperature, and Strong Antiferromagnetic Coupling. Inorganic Chemistry, 2015, 54, 2243-2252.	4.0	14
155	Alkynethiolate ligands in the syntheses of iron carbonyl derivatives. Crystal structure of [(η5-C5H5)Fe(CO)2(SCĩ †CSiMe3)]. Journal of Organometallic Chemistry, 2002, 649, 21-24.	1.8	13
156	Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II) Coordination Polymer and NiAl-Layered Double Hydroxides. Polymers, 2016, 8, 5.	4.5	13
157	High Electrical Conductivity of Single Metal–Organic Chains. Advanced Materials, 2018, 30, e1705645.	21.0	13
158	Introduction to Covalent Organic Frameworks: An Advanced Organic Chemistry Experiment. Journal of Chemical Education, 2019, 96, 1745-1751.	2.3	13
159	Covalent organic frameworks based on electroactive naphthalenediimide as active electrocatalysts toward oxygen reduction reaction. Applied Materials Today, 2022, 26, 101384.	4.3	13
160	Synthesis and structure of (1,3-dimethyluracil-5-yl) mercury(II) complexes with aromatic nitrogen donor ligands. Inorganica Chimica Acta, 1998, 282, 237-242.	2.4	12
161	Unprecedented layered coordination polymers of dithiolene group 10 metals: magnetic and electrical properties. Dalton Transactions, 2016, 45, 6696-6701.	3.3	12
162	Group 10 Metal Benzene-1,2-dithiolate Derivatives in the Synthesis of Coordination Polymers Containing Potassium Countercations. Inorganic Chemistry, 2017, 56, 11810-11818.	4.0	12

#	Article	IF	CITATIONS
163	Synergistic Doping and Surface Decoration of Carbon Nitride Macrostructures by Single Crystal Design. ACS Applied Energy Materials, 2021, 4, 1868-1875.	5.1	12
164	Layered Copper-Metallated Covalent Organic Frameworks for Huisgen Reactions. ACS Applied Materials & Interfaces, 2021, 13, 54106-54112.	8.0	12
165	A way to obtain cyclopalladation of unsubstituted 2-phenylimidazole derivatives. Journal of Organometallic Chemistry, 1996, 522, 97-103.	1.8	11
166	Covalent deposition of ferritin nanoparticles onto gold surfaces. Nanotechnology, 2008, 19, 025302.	2.6	11
167	Azafullerene-like Nanosized Clusters. ACS Nano, 2009, 3, 3352-3357.	14.6	11
168	Electrical Bistability around Room Temperature in an Unprecedented One-Dimensional Coordination Magnetic Polymer. Inorganic Chemistry, 2013, 52, 5943-5950.	4.0	11
169	Highly dense nickel hydroxide nanoparticles catalyst electrodeposited from a novel Ni(II) paddle–wheel complex. Journal of Catalysis, 2015, 329, 22-31.	6.2	11
170	Cunning defects: emission control by structural point defects on Cu(<scp>i</scp>)I double chain coordination polymers. Journal of Materials Chemistry C, 2020, 8, 1448-1458.	5.5	11
171	Electrophoretic deposition of antimonene for photoelectrochemical applications. Applied Materials Today, 2020, 20, 100714.	4.3	11
172	Gas–Solid Heterogeneous Postsynthetic Modification of Imineâ€Based Covalent Organic Frameworks. Chemistry - A European Journal, 2020, 26, 6495-6498.	3.3	11
173	Cu(i), Co(ii) and Fe(ii) coordination polymers with pyrazine and benzoate as ligands. Spin crossover, spin canting and metamagnetism phenomena. Dalton Transactions, 2013, 42, 13453.	3.3	10
174	Structural Diversity of Compounds Based on Iron-Dithiolene with Sodium or Potassium Complexes. Crystal Growth and Design, 2016, 16, 5466-5478.	3.0	10
175	Reversible transformation between Cu(<scp>i</scp>)-thiophenolate coordination polymers displaying luminescence and electrical properties. CrystEngComm, 2019, 21, 3232-3239.	2.6	10
176	Reversible Solventâ€Exchangeâ€Ðriven Transformations in Multifunctional Coordination Polymers Based on Copperâ€Containing Organosulfur Ligands. European Journal of Inorganic Chemistry, 2014, 2014, 3879-3887.	2.0	9
177	Direct Formation of Sub-Micron and Nanoparticles of a Bioinspired Coordination Polymer Based on Copper with Adenine. Polymers, 2017, 9, 565.	4.5	9
178	Preparation of high-quality few-layers bismuthene hexagons. Applied Materials Today, 2022, 26, 101360.	4.3	9
179	Palladium(II) 4,5-Diphenylimidazole Cyclometalated Complexes: DNA Interaction. Applied Organometallic Chemistry, 1997, 11, 491-497.	3.5	8
180	Self-Assembly of Supramolecular Architectures Using Chlorotetra(Pyrrole-2-Carboxylato)Diruthenium Molecules as Building Blocks. Journal of Cluster Science, 2008, 19, 219-230.	3.3	8

#	Article	IF	CITATIONS
181	Supramolecular Chemistry of Metal–Nucleobase Complexes. , 0, , 95-132.		8
182	S–S bond reactivity in metal-perthiocarboxylato compounds. Dalton Transactions, 2010, 39, 1511-1518.	3.3	8
183	Hollow <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mtext>C</mml:mtext><mml:mn>3</mml:mn></mml:msub><r from first principles. Physical Review B, 2010, 82, .</r </mml:mrow></mml:math>	nm £ 20.sub	><ı&ml:mte×
184	Dynamic combinatorial chemistry in a solvothermal process between nickel(ii), halides and organosulphur ligands. RSC Advances, 2013, 3, 18406.	3.6	8
185	Fast and efficient direct formation of size-controlled nanostructures of coordination polymers based on copper(<scp>i</scp>)–iodine bearing functional pyridine terminal ligands. Dalton Transactions, 2018, 47, 5607-5613.	3.3	8
186	Micro and Nano Smart Composite Films Based on Copper-lodine Coordination Polymer as Thermochromic Biocompatible Sensors. Polymers, 2019, 11, 1047.	4.5	8
187	Direct Visualization and Effects of Atomicâ€Scale Defects on the Optoelectronic Properties of Hexagonal Boron Nitride. Advanced Electronic Materials, 2021, 7, 2001177.	5.1	8
188	Continuousâ€Flow Synthesis of Highâ€Quality Few‣ayer Antimonene Hexagons. Advanced Functional Materials, 2021, 31, 2101616.	14.9	8
189	Fluorescent Carbon Nitride Macrostructures Derived from Triazineâ€Based Cocrystals. Advanced Optical Materials, 2021, 9, 2100683.	7.3	8
190	Tridentate Coordination Modes of Functionalized Titanocene Thiolates. Crystal Structure of [(η5-C5H4SiMe3)Ti(μ-η5:κ-P-C5H4PPh2)(μ-SPh)2W(CO)3]. Inorganic Chemistry, 1998, 37, 6684-6689.	4.0	7
191	Carbon nanotubes growth on silicon nitride substrates. Materials Letters, 2011, 65, 1479-1481.	2.6	7
192	Supramolecular Attachment of Metalloporphyrins to Graphene Oxide and its Pyridine ontaining Derivative. Chemistry - A European Journal, 2013, 19, 10463-10467.	3.3	7
193	The Isolation of Single MMX Chains from Solution: Unravelling the Assembly–Disassembly Process. Chemistry - A European Journal, 2013, 19, 15518-15529.	3.3	7
194	New insights into the chemistry of di- and trimetallic iron dithiolene derivatives. Structural, Mössbauer, magnetic, electrochemical and theoretical studies. Dalton Transactions, 2014, 43, 13187-13195.	3.3	7
195	Crystallization Induced Enhanced Emission in Two New Zn(II) and Cd(II) Supramolecular Coordination Complexes with the 1-(3,4-Dimethylphenyl)-5-Methyl-1H-1,2,3-Triazole-4-Carboxylate Ligand. Polymers, 2020, 12, 1756.	4.5	7
196	Synthesis of metal-free lightweight materials with sequence-encoded properties. Journal of Materials Chemistry A, 2020, 8, 8752-8760.	10.3	7
197	Revisiting Vibrational Spectroscopy to Tackle the Chemistry of Zr ₆ O ₈ Metal-Organic Framework Nodes. ACS Applied Materials & Interfaces, 2022, 14, 27040-27047.	8.0	7
198	Anodic Aluminium Oxide Membranes Used for the Growth of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 6396-6400.	0.9	6

#	Article	IF	CITATIONS
199	Stability and electronic structure of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math> -DNA: Role of metal position. Physical Review B, 2011, 84, .	3.2	6
200	On the Road to MM′X Polymers: Redox Properties of Heterometallic Ni···Pt Paddlewheel Complexes. Inorganic Chemistry, 2014, 53, 10553-10562.	4.0	6
201	Rhodium and copper 6-methylpicolinate complexes. Structural diversity and supramolecular interaction study. Inorganica Chimica Acta, 2016, 453, 574-582.	2.4	6
202	The role of defects in the properties of functional coordination polymers. Advances in Inorganic Chemistry, 2020, 76, 73-119.	1.0	6
203	Unveiling the Local Structure of Palladium Loaded into Imineâ€Linked Layered Covalent Organic Frameworks for Crossâ€Coupling Catalysis. Angewandte Chemie, 2020, 132, 13113-13120.	2.0	6
204	Few-layer antimonene electrical properties. Applied Materials Today, 2021, 24, 101132.	4.3	6
205	Synthesis and crystal structure of a diplatinum cyclopentadienyldiphenylphosphine sulphide bridged complex. Inorganica Chimica Acta, 2001, 315, 1-8.	2.4	5
206	Substituent and Noncovalent Interaction Effects in the Reactivity of Purine Derivatives with Tetracarboxylato-dirhodium(II) Units. Rationalization of a Rare Binding Mode via N3. Inorganic Chemistry, 2013, 52, 2174-2181.	4.0	5
207	Supramolecular interactions in Cobalt(II)–nucleobases complexes: A methyl matter. Inorganica Chimica Acta, 2016, 452, 251-257.	2.4	5
208	Operando Methods for the Mechanistic Elucidation of an Electrochemically Driven Structural Transformation. Journal of Physical Chemistry C, 2018, 122, 12377-12383.	3.1	5
209	A bioinspired metal–organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition. Nanoscale, 2020, 12, 14699-14707.	5.6	5
210	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14088-14096.	2.0	5
211	Rational Design of Copper(II)–Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media. ACS Applied Materials & Interfaces, 2021, 13, 36948-36957.	8.0	5
212	Dependence of the Single Walled Carbon Nanotube Length with Growth Temperature and Catalyst Density by Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2009, 9, 2830-2835.	0.9	4
213	S–S Bond Activation in Multiâ€Copper ÂAggregates Containing Perthiocarboxylato Ligands. European Journal of Inorganic Chemistry, 2015, 2015, 4044-4054.	2.0	4
214	On-surface self-organization of a robust metal–organic cluster based on copper(<scp>i</scp>) with chloride and organosulphur ligands. Chemical Communications, 2015, 51, 3243-3246.	4.1	4
215	Comparative Studies of Oxidation Processes on Group 10 Metals Dithiolene Derivatives in the Formation of Coordination Polymers. Crystal Growth and Design, 2018, 18, 2486-2494.	3.0	4
216	Heterobimetallic three-dimensional 4d-4f coordination polymers based on 5-methyl-1-(pyridyn-4-ylmethyl)-1H-1,2,3-triazole-3,4-dicarboxylate. Journal of Solid State Chemistry, 2022, 310, 123027.	2.9	4

#	Article	IF	CITATIONS
217	Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles. Journal of Nanomaterials, 2010, 2010, 1-7.	2.7	3
218	Nanostructures on surfaces of the metalorganic compound {Fe2(CO)6[µ-S2C6H2(OH)2]} and its potential as catalyst precursor for the synthesis of carbon nanotubes. Dalton Transactions, 2011, 40, 3109.	3.3	3
219	Supramolecular architectures based on 6-purinethione complexes. Inorganica Chimica Acta, 2014, 417, 142-147.	2.4	3
220	Exfoliated graphite flakes as soft-electrodes for precisely contacting nanoobjects. 2D Materials, 2015, 2, 035008.	4.4	3
221	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. Journal of Visualized Experiments, 2017, , .	0.3	3
222	Copper dithiolene [Cu(SC6H2Cl2S)2]â^' units connected to alkaline/copper complexes: from ionic assemblies to discrete molecular entities and coordination polymers. CrystEngComm, 2019, 21, 957-963.	2.6	3
223	Electrochemically Generated Nanoparticles of Halogenâ€Bridged Mixedâ€Valence Binuclear Metal Complex Chains. Chemistry - A European Journal, 2014, 20, 7107-7115.	3.3	2
224	Synthesis and crystal structures of ion-pairs based on anionic iron-dithiolenes and alkylammonium as countercation. Journal of Molecular Structure, 2019, 1196, 323-331.	3.6	2
225	Synthesis and structural characterization of transition metal dithiolene derivatives containing divalent metals as counter-cations. CrystEngComm, 2019, 21, 1423-1432.	2.6	2
226	Pyrimidine Nucleobases as Versatile and Multidentate Ligands for Heavy Metal Ions. Significance of Metal Binding to the C(5) Sites of Uracil and Cytosine. , 1997, , 511-520.		2
227	Nonacarbonyl-μ-hydrido-(μ3,η2-triisopropylsilylethynyl)triruthenium. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, m571-m573.	0.2	1
228	Rücktitelbild: Few-Layer Antimonene by Liquid-Phase Exfoliation (Angew. Chem. 46/2016). Angewandte Chemie, 2016, 128, 14686-14686.	2.0	1
229	Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie, 2017, 129, 1007-1011.	2.0	1
230	Cu(<scp>i</scp>) lodide coordination polymers with aromatic thioamides. CrystEngComm, 2020, 22, 5447-5452.	2.6	1
231	Structural Factors Governing the Formation of Extended Structures in Group 10 and 12 Metal-Dithiolenes. Crystal Growth and Design, 2020, 20, 4573-4584.	3.0	1
232	A Nanostructured Cu(II) Coordination Polymer Based on Alanine as a Trifunctional Mimic Enzyme and Efficient Composite in the Detection of Sphingobacteria. Bioinorganic Chemistry and Applications, 2022, 2022, 1-10.	4.1	1
233	Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer (Adv.) Tj ETQq1	1 0.784314 rgB 21.0	T [Overlock
234	Structural Study of the Compounds Formed in the Reactions of FeCl3·6H2O with Ni(OH)2 in the Presence of Dithiolenes HSRSH (R = C6H2Cl2 or C6H4). Molecules, 2020, 25, 2240.	3.8	0

#	Article	IF	CITATIONS
235	Di-μ-dimethylformamide-κ4O:O-μ-tetrahydrofuran-κ2O:O-bis[(tetrahydrofuran-κO)sodium(l)] bis(μ-3,6-dichlorobenzene-1,2-dithiolato-κ3S,S′:S)bis[(3,6-dichlorobenzene-1,2-dithiolato-κ2S,S′)iron(III)]. IUCrData, 2016, 1, .	0.3	0
236	Inorganic Materials and Metal–Organic Frameworks: Editorial Announcement. Nanomaterials, 2021, 11, 3279.	4.1	0