Esben Thade Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1210965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Analysis of Blood <scp>T₂</scp> Values Measured by <scp>T₂â€TRIR</scp> and <scp>TRUST</scp> . Journal of Magnetic Resonance Imaging, 2022, 56, 516-526.	1.9	6
2	Locus Coeruleus Shows a Spatial Pattern of Structural Disintegration in Parkinson's Disease. Movement Disorders, 2022, 37, 479-489.	2.2	27
3	Improving brain BO shimming using an easy and accessible multi-coil shim array at ultra-high field. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2022, , .	1.1	0
4	Add-On MEmaNtine to Dopamine Antagonism to Improve Negative Symptoms at First Psychosis- the AMEND Trial Protocol. Frontiers in Psychiatry, 2022, 13, .	1.3	3
5	Prospective frequency and motion correction for edited 1H magnetic resonance spectroscopy. NeuroImage, 2021, 233, 117922.	2.1	4
6	Do glia provide the link between lowâ€grade systemic inflammation and normal cognitive ageing? A ¹ H magnetic resonance spectroscopy study at 7 tesla. Journal of Neurochemistry, 2021, 159, 185-196.	2.1	11
7	Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1869-1878.	2.4	30
8	Quantification of cerebral perfusion and cerebrovascular reserve using Turboâ€QUASAR arterial spin labeling MRI. Magnetic Resonance in Medicine, 2020, 83, 731-748.	1.9	11
9	Regional Myo-Inositol, Creatine, and Choline Levels Are Higher at Older Age and Scale Negatively with Visuospatial Working Memory: A Cross-Sectional Proton MR Spectroscopy Study at 7 Tesla on Normal Cognitive Ageing. Journal of Neuroscience, 2020, 40, 8149-8159.	1.7	36
10	Feasibility of Glutamate and GABA Detection in Pons and Thalamus at 3T and 7T by Proton Magnetic Resonance Spectroscopy. Frontiers in Neuroscience, 2020, 14, 559314.	1.4	17
11	MR spectroscopy using static higher order shimming with dynamic linear terms (HOSâ€ÐLT) for improved water suppression, interleaved MRSâ€fMRI, and navigatorâ€based motion correction at 7T. Magnetic Resonance in Medicine, 2020, 84, 1101-1112.	1.9	13
12	Cerebral oxygen metabolism in adults with sickle cell disease. American Journal of Hematology, 2020, 95, 401-412.	2.0	31
13	Sildenafil and calcitonin gene-related peptide dilate intradural arteries: A 3T MR angiography study in healthy volunteers. Cephalalgia, 2019, 39, 264-273.	1.8	11
14	Improvement in diagnostic quality of structural and angiographic MRI of the brain using motion correction with interleaved, volumetric navigators. PLoS ONE, 2019, 14, e0217145.	1.1	22
15	Ultra-high field MR angiography in human migraine models: a 3.0 T/7.0 T comparison study. Journal of Headache and Pain, 2019, 20, 48.	2.5	5
16	Gammaâ€aminobutyric acid edited echoâ€planar spectroscopic imaging (EPSI) with MEGAâ€sLASER at 7T. Magnetic Resonance in Medicine, 2019, 81, 773-780.	1.9	6
17	Hemodynamic provocation with acetazolamide shows impaired cerebrovascular reserve in adults with sickle cell disease. Haematologica, 2019, 104, 690-699.	1.7	40
18	T 2 mapping of cerebrospinal fluid: 3ÂT versus 7ÂT. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 415-424.	1.1	33

#	Article	IF	CITATIONS
19	Improved calculation of the equilibrium magnetization of arterial blood in arterial spin labeling. Magnetic Resonance in Medicine, 2018, 80, 2223-2231.	1.9	6
20	Increased variability of watershed areas in patients with high-grade carotid stenosis. Neuroradiology, 2018, 60, 311-323.	1.1	11
21	Relationship between haemodynamic impairment and collateral blood flow in carotid artery disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2021-2032.	2.4	48
22	The effect of physical exercise on cerebral blood flow in Alzheimer's disease. NeuroImage: Clinical, 2018, 20, 650-654.	1.4	67
23	Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods. PLoS ONE, 2018, 13, e0196119.	1.1	8
24	Effects of sildenafil and calcitonin gene-related peptide on brainstem glutamate levels: a pharmacological proton magnetic resonance spectroscopy study at 3.0ÂT. Journal of Headache and Pain, 2018, 19, 44.	2.5	14
25	Effect sizes of BOLD CVR, resting-state signal fluctuations and time delay measures for the assessment of hemodynamic impairment in carotid occlusion patients. NeuroImage, 2018, 179, 530-539.	2.1	20
26	Brain oxygen saturation assessment in neonates using T ₂ -prepared blood imaging of oxygen saturation and near-infrared spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 902-913.	2.4	14
27	Insight into the labeling mechanism of acceleration selective arterial spin labeling. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2017, 30, 165-174.	1.1	10
28	Evaluation of an fMRI USPIO-based assay in healthy human volunteers. Journal of Magnetic Resonance Imaging, 2017, 46, 124-133.	1.9	11
29	Feasibility of measuring thermoregulation during RF heating of the human calf muscle using MR based methods. Magnetic Resonance in Medicine, 2016, 75, 1743-1751.	1.9	8
30	Large field-of-view transmission line resonator for high field MRI. , 2016, , .		0
31	Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy. European Radiology, 2016, 26, 1254-1262.	2.3	14
32	Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates: a review. Pediatric Research, 2016, 80, 641-650.	1.1	11
33	Arterial Spin Labeling and Blood Oxygen Level-Dependent MRI Cerebrovascular Reactivity in Cerebrovascular Disease: A Systematic Review and Meta-Analysis. Cerebrovascular Diseases, 2016, 42, 288-307.	0.8	22
34	The BOLD cerebrovascular reactivity response to progressive hypercapnia in young and elderly. NeuroImage, 2016, 139, 94-102.	2.1	39
35	T2-prepared velocity selective labelling: A novel idea for full-brain mapping of oxygen saturation. NeuroImage, 2016, 139, 65-73.	2.1	3
36	Ageâ€related changes in brain hemodynamics; A calibrated <scp>MRI</scp> study. Human Brain Mapping, 2015, 36, 3973-3987.	1.9	103

#	Article	IF	CITATIONS
37	Cerebral blood flow measurements in infants using look–locker arterial spin labeling. Journal of Magnetic Resonance Imaging, 2015, 41, 1591-1600.	1.9	25
38	Estimation of arterial arrival time and cerebral blood flow from QUASAR arterial spin labeling using stable spline. Magnetic Resonance in Medicine, 2015, 74, 1758-1767.	1.9	2
39	Compensating for magnetic field inhomogeneity in multigradient-echo-based MR thermometry. Magnetic Resonance in Medicine, 2015, 73, 1184-1189.	1.9	8
40	Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. European Radiology, 2015, 25, 113-121.	2.3	79
41	Neuronal activation induced BOLD and CBF responses upon acetazolamide administration in patients with steno-occlusive artery disease. NeuroImage, 2015, 105, 276-285.	2.1	26
42	Examining the regional and cerebral depth-dependent BOLD cerebrovascular reactivity response at 7 T. Neurolmage, 2015, 114, 239-248.	2.1	64
43	Arterial and portal venous liver perfusion using selective spin labelling MRI. European Radiology, 2015, 25, 1529-1540.	2.3	13
44	Calibrated MRI to Evaluate Cerebral Hemodynamics in Patients with an Internal Carotid Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1015-1023.	2.4	42
45	Cerebral Perfusion Measurements in Elderly with Hypertension Using Arterial Spin Labeling. PLoS ONE, 2015, 10, e0133717.	1.1	60
46	Cerebral Arterial Bolus Arrival Time is Prolonged in Multiple Sclerosis and Associated with Disability. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 34-42.	2.4	60
47	Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling. NMR in Biomedicine, 2014, 27, 1112-1122.	1.6	17
48	Non-invasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates. NeuroImage, 2014, 95, 185-192.	2.1	39
49	Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: A head-to-head comparison with 150 H2O positron emission tomography. NeuroImage, 2014, 92, 182-192.	2.1	133
50	Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: Implications for arterial spin labelling MRI. NeuroImage: Clinical, 2014, 4, 517-525.	1.4	44
51	Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder. Pain, 2014, 155, 467-475.	2.0	68
52	Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults. NeuroImage, 2014, 85, 255-263.	2.1	42
53	Subtle Alterations in Brain Anatomy May Change an Individual's Personality in Chronic Pain. PLoS ONE, 2014, 9, e109664.	1.1	18
54	Comparing modelâ€based and modelâ€free analysis methods for QUASAR arterial spin labeling perfusion quantification. Magnetic Resonance in Medicine, 2013, 69, 1466-1475.	1.9	17

#	Article	IF	CITATIONS
55	Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR in Biomedicine, 2013, 26, 901-912.	1.6	58
56	Regional cerebral perfusion in patients with Alzheimer's disease and mild cognitive impairment: effect of APOE Epsilon4 allele. Neuroradiology, 2013, 55, 25-34.	1.1	69
57	Perfusion quantification by modelâ€free arterial spin labeling using nonlinear stochastic regularization deconvolution. Magnetic Resonance in Medicine, 2013, 70, 1470-1480.	1.9	4
58	Regional changes in brain perfusion during brain maturation measured non-invasively with Arterial Spin Labeling MRI in neonates. European Journal of Radiology, 2013, 82, 538-543.	1.2	54
59	Arterial Spin Labeling Magnetic Resonance Imaging. PET Clinics, 2013, 8, 295-309.	1.5	1
60	Chronic Pain: Lost Inhibition?. Journal of Neuroscience, 2013, 33, 7574-7582.	1.7	148
61	In vivo blood <i>T</i> ₁ measurements at 1.5 T, 3 T, and 7 T. Magnetic Resonance in Medicine, 2013, 70, 1082-1086.	1.9	150
62	Evaluation of perinatal arterial ischemic stroke using noninvasive arterial spin labeling perfusion MRI. Pediatric Research, 2013, 74, 307-313.	1.1	41
63	Effects of Subanesthetic Dose of Nitrous Oxide on Cerebral Blood Flow and Metabolism. Anesthesiology, 2013, 118, 577-586.	1.3	22
64	Quantitative Assessment of Cerebral Hemodynamic Parameters by QUASAR Arterial Spin Labeling in Alzheimer's Disease and Cognitively Normal Elderly Adults at 3-Tesla. Journal of Alzheimer's Disease, 2012, 31, 33-44.	1.2	76
65	Vascular Disorders: Insights from Arterial Spin Labeling. Neuroimaging Clinics of North America, 2012, 22, 259-269.	0.5	48
66	Similarities and Differences in Arterial Responses to Hypercapnia and Visual Stimulation. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 560-571.	2.4	29
67	Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2011, 24, 211-223.	1.1	35
68	A method for rapid <i>in vivo</i> measurement of blood <i>T</i> ₁ . NMR in Biomedicine, 2011, 24, 80-88.	1.6	75
69	Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magnetic Resonance Imaging, 2010, 28, 1-7.	1.0	42
70	Distribution of Cerebral Blood Flow in the Nucleus Caudatus, Nucleus Lentiformis, and Thalamus: A Study of Territorial Arterial Spin-labeling MR Imaging. Radiology, 2010, 254, 867-875.	3.6	25
71	Measuring arterial and tissue responses to functional challenges using arterial spin labeling. NeuroImage, 2010, 49, 478-487.	2.1	15
72	The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test–retest study. Neurolmage, 2010, 49, 104-113.	2.1	223

#	Article	IF	CITATIONS
73	Relation Between Cerebral Perfusion Territories and Location of Cerebral Infarcts. Stroke, 2009, 40, 1617-1622.	1.0	37
74	Residual neurovascular function and retinotopy in a case of hemianopia. Annals of the Academy of Medicine, Singapore, 2009, 38, 827-31.	0.2	5
75	Territorial Arterial Spin Labeling in the Assessment of Collateral Circulation. Stroke, 2008, 39, 3248-3254.	1.0	98
76	Cerebral Border Zones between Distal End Branches of Intracranial Arteries: MR Imaging. Radiology, 2008, 246, 572-580.	3.6	83
77	Arterial Spin Labeling: a One-stop-shop for Measurement of Brain Perfusion in the Clinical Settings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4320-3.	0.5	4
78	Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. British Journal of Radiology, 2006, 79, 688-701.	1.0	300
79	Arterial Spin Labeling: Benefits and Pitfalls of High Magnetic Field. Neuroimaging Clinics of North America, 2006, 16, 259-268.	0.5	82
80	Model-free arterial spin labeling quantification approach for perfusion MRI. Magnetic Resonance in Medicine, 2006, 55, 219-232.	1.9	275
81	Dual vessel arterial spin labeling scheme for regional perfusion imaging. Magnetic Resonance in Medicine, 2006, 56, 1140-1144.	1.9	34
82	Pulsed star labeling of arterial regions (PULSAR): A robust regional perfusion technique for high field imaging. Magnetic Resonance in Medicine, 2005, 53, 15-21.	1.9	143