List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12108606/publications.pdf Version: 2024-02-01

AMOS PANET

#	Article	IF	CITATIONS
1	Human Nasal and Lung Tissues Infected <i>Ex Vivo</i> with SARS-CoV-2 Provide Insights into Differential Tissue-Specific and Virus-Specific Innate Immune Responses in the Upper and Lower Respiratory Tract. Journal of Virology, 2021, 95, e0013021.	3.4	47
2	Human Nasal Turbinate Tissues in Organ Culture as a Model for Human Cytomegalovirus Infection at the Mucosal Entry Site. Journal of Virology, 2020, 94, .	3.4	6
3	A Novel Tool for Nasal Polyp Investigation: An Ex vivo Organ Culture System. Israel Medical Association Journal, 2020, 22, 48-52.	0.1	0
4	Artemisone demonstrates synergistic antiviral activity in combination with approved and experimental drugs active against human cytomegalovirus. Antiviral Research, 2019, 172, 104639.	4.1	22
5	Successful intracranial delivery of trastuzumab by gene-therapy for treatment of HER2-positive breast cancer brain metastases. Journal of Controlled Release, 2018, 291, 80-89.	9.9	27
6	Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct Innate Tissue Responses in the Maternal-Fetal Interface. Journal of Virology, 2017, 91, .	3.4	95
7	APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. Journal of Virology, 2017, 91, .	3.4	27
8	Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules. Journal of Virology, 2017, 91, .	3.4	55
9	Sustained secretion of antiâ€ŧumor necrosis factor α monoclonal antibody from <i>ex vivo</i> genetically engineered dermal tissue demonstrates therapeutic activity in mouse model of rheumatoid arthritis. Journal of Gene Medicine, 2017, 19, e2965.	2.8	4
10	Innate defense mechanisms against HSV-1 infection in the target tissues, skin and brain. Journal of NeuroVirology, 2016, 22, 641-649.	2.1	10
11	Preclinical and preliminary clinical evaluation of genetically transduced dermal tissue implants for the sustained secretion of erythropoietin and interferon α. Human Gene Therapy Clinical Development, 2015, , .	3.1	0
12	Therapeutic potential of oncolytic Newcastle disease virus a critical review. Oncolytic Virotherapy, 2015, 4, 49.	6.0	45
13	Preclinical and Preliminary Clinical Evaluation of Genetically Transduced Dermal Tissue Implants for the Sustained Secretion of Erythropoietin and Interferon α. Human Gene Therapy Clinical Development, 2015, 26, 216-227.	3.1	9
14	Human cytomegalovirus induces a distinct innate immune response in the maternal–fetal interface. Virology, 2015, 485, 289-296.	2.4	29
15	Transition toward Human Cytomegalovirus Susceptibility in Early Human Embryonic Stem Cell-Derived Neural Precursors. Journal of Virology, 2015, 89, 11159-11164.	3.4	18
16	Different modes of herpes simplex virus type 1 spread in brain and skin tissues. Journal of NeuroVirology, 2014, 20, 18-27.	2.1	13
17	Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Seminars in Immunopathology, 2014, 36, 615-625.	6.1	54
18	Extracellular matrix constituents interfere with Newcastle disease virus spread in solid tissue and diminish its potential oncolytic activity. Journal of General Virology, 2012, 93, 1664-1672.	2.9	23

#	Article	IF	CITATIONS
19	Integrated Strategy for the Production of Therapeutic Retroviral Vectors. Human Gene Therapy, 2011, 22, 370-379.	2.7	11
20	Biopump: Autologous skin-derived micro-organ genetically engineered to provide sustained continuous secretion of therapeutic proteins. Dermatologic Therapy, 2011, 24, 489-497.	1.7	11
21	Infant lungs are preferentially infected by adenovirus and herpes simplex virus type 1 vectors: role of the tissue mesenchymal cells. Journal of Gene Medicine, 2011, 13, 101-113.	2.8	10
22	Characterization of factors that determine lentiviral vector tropism in skin tissue using an <i>ex vivo</i> model. Journal of Gene Medicine, 2011, 13, 209-220.	2.8	7
23	Modeling of Human Cytomegalovirus Maternal-Fetal Transmission in a Novel Decidual Organ Culture. Journal of Virology, 2011, 85, 13204-13213.	3.4	68
24	Restrictions that control herpes simplex virus type 1 infection in mouse brain ex vivo. Journal of General Virology, 2011, 92, 2383-2393.	2.9	13
25	The Oncolytic Activity of Newcastle Disease Virus NDV-HUJ on Chemoresistant Primary Melanoma Cells Is Dependent on the Proapoptotic Activity of the Inhibitor of Apoptosis Protein Livin. Journal of Virology, 2010, 84, 639-646.	3.4	58
26	Herpes Simplex Virus Type 1 Preferentially Targets Human Colon Carcinoma: Role of Extracellular Matrix. Journal of Virology, 2008, 82, 999-1010.	3.4	38
27	Tropism of Lentiviral Vectors in Skin Tissue. Human Gene Therapy, 2008, 19, 255-266.	2.7	14
28	Time Frames for Neutralization during the Human Immunodeficiency Virus Type 1 Entry Phase, as Monitored in Synchronously Infected Cell Cultures. Journal of Virology, 2007, 81, 3525-3534.	3.4	17
29	Neurotropism of herpes simplex virus type 1 in brain organ cultures. Journal of General Virology, 2006, 87, 2827-2837.	2.9	49
30	Phase I/II Trial of Intravenous NDV-HUJ Oncolytic Virus in Recurrent Glioblastoma Multiforme. Molecular Therapy, 2006, 13, 221-228.	8.2	329
31	Prolonged transgene expression in murine salivary glands following non-primate lentiviral vector transduction. Molecular Therapy, 2005, 12, 137-143.	8.2	14
32	Ex vivo transduction of human dermal tissue structures for autologous implantation production and delivery of therapeutic proteins. Molecular Therapy, 2005, 12, 274-282.	8.2	34
33	Synchronized Infection of Cell Cultures by Magnetically Controlled Virus. Journal of Virology, 2005, 79, 622-625.	3.4	48
34	Human peripheral blood eosinophils induce angiogenesis. International Journal of Biochemistry and Cell Biology, 2005, 37, 628-636.	2.8	111
35	Transgenic Mouse with the Herpes Simplex Virus Type 1 Latency-Associated Gene: Expression and Function of the Transgene. Journal of Virology, 2003, 77, 12421-12429.	3.4	12
36	Gene Delivery by Viral Vectors in Primary Cultures of Lacrimal Gland Tissue. , 2003, 44, 1529.		10

#	Article	IF	CITATIONS
37	Viral mediated gene transfer to sprouting blood vessels during angiogenesis. Journal of Virological Methods, 2002, 105, 1-11.	2.1	8
38	Gene transfer mediated by different viral vectors following direct cannulation of mouse submandibular salivary glands. European Journal of Oral Sciences, 2002, 110, 254-260.	1.5	25
39	Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Letters, 2001, 495, 56-60.	2.8	157
40	Imaging Transgene Expression in Live Animals. Molecular Therapy, 2001, 4, 239-249.	8.2	167
41	A synthetic heparin-mimicking polyanionic compound binds to the LDL receptor-related protein and inhibits vascular smooth muscle cell proliferation. Journal of Cellular Biochemistry, 2001, 81, 114-127.	2.6	11
42	Avian Hemangioma Retrovirus Induces Cell Proliferation via the Envelope (env) Gene. Virology, 2000, 276, 161-168.	2.4	41
43	Herpes Simplex Virus Type 1 Latency-Associated Transcripts Suppress Viral Replication and Reduce Immediate-Early Gene mRNA Levels in a Neuronal Cell Line. Journal of Virology, 1998, 72, 5067-5075.	3.4	93
44	Variant mouse lymphoma cells with modified response to interferon demonstrate enhanced immunogenicity. Cancer Immunology, Immunotherapy, 1997, 44, 249-256.	4.2	5
45	Programmed Endothelial Cell Death Induced by an Avian Hemangioma Retrovirus Is Density Dependent. Virology, 1996, 223, 233-237.	2.4	14
46	Heparin-binding domain, type 1 and type 2 repeats of thrombospondin mediate its interaction with human breast cancer cells. , 1996, 62, 431-442.		18
47	Expression and Splicing of the Latency-Associated Transcripts of Herpes Simplex Virus Type 1 in Neuronal and Non-Neuronal Cell Lines1. Journal of Biochemistry, 1995, 117, 1288-1297.	1.7	31
48	Apolipoprotein E: A potent inhibitor of endothelial and tumor cell proliferation. Journal of Cellular Biochemistry, 1994, 54, 299-308.	2.6	109
49	Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. Journal of Cellular Biochemistry, 1993, 53, 74-84.	2.6	153
50	Isolation and characterization of interferon-resistant variants from S49 mouse lymphoma. Experimental Cell Research, 1988, 177, 37-46.	2.6	1
51	Use of reconstituted Sendai virus envelopes for fusion-mediated microinjection of double-stranded RNA: inhibition of protein synthesis in interferon-treated cells. Biochimica Et Biophysica Acta - Biomembranes, 1986, 859, 88-94.	2.6	8
52	Production and characterization of interferon from endothelial cells. Journal of Cellular Physiology, 1985, 122, 200-204.	4.1	38
53	The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Experimental Cell Research, 1985, 161, 297-306.	2.6	90
54	Regulation of the antiviral and anticellular activities of interferon by exogenous double-stranded RNA. Molecular and Cellular Biochemistry, 1983, 52, 153-60.	3.1	12

#	Article	IF	CITATIONS
55	Activation of ribonuclease F by the two isomers (2'-5') oligoadenylate and (3'-5') oligoadenylate. FEBS Letters, 1982, 149, 47-50.	2.8	6
56	Differential inhibition of DNA polymerase and RNase H activities of the reverse transcriptase by phosphonoformate. Molecular and Cellular Biochemistry, 1982, 43, 97-103.	3.1	20
57	Effect of 2′5′-oligoadenylic acid on a mouse cell line partially resistant to interferon. Virology, 1981, 114, 567-572.	2.4	31
58	A Mouse Cell Line, which Is Unprotected by Interferon against Lytic Virus Infection, Lacks Ribonuclease F Activity. FEBS Journal, 1981, 118, 9-15.	0.2	80
59	MECHANISMS OF INTERFERON ACTION ON CELL GROWTH AND ON MURINE LEUKEMIA, VESICULAR STOMATITIS, AND ENCEPHALOMYOCARDITIS VIRUSES. , 1981, , 385-401.		0
60	Restriction of murine leukemia proviral gene expression in somatic mouse cell hybrids. Virology, 1980, 106, 197-206.	2.4	0
61	Electron microscopic evidence for splicing of Moloney murine leukemia virus RNAs. Nucleic Acids Research, 1978, 5, 3219-3230.	14.5	18
62	Binding of tRNA to Reverse Transcriptase of RNA Tumor Viruses. Journal of Virology, 1978, 26, 214-220.	3.4	71
63	Selective degradation of integrated murine leukemia proviral DNA by deoxyribonucleases. Cell, 1977, 11, 933-940.	28.9	101
64	Interaction of tryptophan tRNA and avian myeloblastosis virus reverse transcriptase: further characterization of the binding reaction. Biochemistry, 1977, 16, 3625-3632.	2.5	61
65	Ordered transcription of RNA tumor virus genomes. Journal of Molecular Biology, 1976, 106, 109-131.	4.2	194
66	The Binding of Purified Phe-tRNA and Peptidyl-tRNAPhe to Escherichia coli Ribosomes. FEBS Journal, 1971, 23, 523-527.	0.2	72
67	Reaction of Puromycin with Chemically Prepared Peptidyl Transfer RNA. FEBS Journal, 1970, 15, 215-221.	0.2	26
68	Substrate Specificity of Escherichia coli Peptidyl-Transferase. FEBS Journal, 1970, 15, 222-225.	0.2	15