Casey K Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12107187/publications.pdf

Version: 2024-02-01

304368 525886 27 1,876 22 27 h-index citations g-index papers 28 28 28 3094 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biomimetic Nanocomposites to Control Osteogenic Differentiation of Human Mesenchymal Stem Cells. Advanced Healthcare Materials, 2014, 3, 737-751.	3.9	43
2	Enhanced osteogenic differentiation with 3D electrospun nanofibrous scaffolds. Nanomedicine, 2012, 7, 1561-1575.	1.7	36
3	Electrospun Poly(L-Lactic Acid) Nanofibres Loaded with Dexamethasone to Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1771-1791.	1.9	26
4	Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomedical Materials (Bristol), 2012, 7, 015001.	1.7	78
5	Effects of Nanofiber/Stem Cell Composite on Wound Healing in Acute Full-Thickness Skin Wounds. Tissue Engineering - Part A, 2011, 17, 1413-1424.	1.6	100
6	The role of nanofibrous structure in osteogenic differentiation of human mesenchymal stem cells with serial passage. Nanomedicine, 2011, 6, 961-974.	1.7	17
7	Electrospun nanofibers: Work for medicine?. Frontiers of Materials Science in China, 2010, 4, 29-33.	0.5	24
8	Distinctive Degradation Behaviors of Electrospun Polyglycolide, Poly(<scp>dl</scp> -Lactide- <i>co</i> -E)-Caprolactone) Nanofibers Cultured With/Without Porcine Smooth Muscle Cells. Tissue Engineering - Part A, 2010, 16, 283-298.	1.6	68
9	Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers. Biomedical Materials (Bristol), 2009, 4, 035006.	1.7	41
10	Differentiation of bone marrow-derived mesenchymal stem cells into multi-layered epidermis-like cells in 3D organotypic coculture. Biomaterials, 2009, 30, 3251-3258.	5.7	47
11	The influence of laminin-derived peptides conjugated to Lys-capped PLLA on neonatal mouse cerebellum C17.2 stem cells. Biomaterials, 2009, 30, 1578-1586.	5.7	28
12	The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone, 2009, 45, 4-16.	1.4	302
13	The dose effect of human bone marrow-derived mesenchymal stem cells on epidermal development in organotypic co-culture. Journal of Dermatological Science, 2009, 55, 150-160.	1.0	33
14	Effects of nanotopography on stem cell phenotypes. World Journal of Stem Cells, 2009, 1, 55.	1.3	77
15	Degradation Behaviors of Electrospun Resorbable Polyester Nanofibers. Tissue Engineering - Part B: Reviews, 2009, 15, 333-351.	2.5	160
16	Fabrication of Mineralized Polymeric Nanofibrous Composites for Bone Graft Materials. Tissue Engineering - Part A, 2009, 15, 535-546.	1.6	98
17	Fabrication of nano-hydroxyapatite/collagen/osteonectin composites for bone graft applications. Biomedical Materials (Bristol), 2009, 4, 025019.	1.7	40
18	Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 252-260.	1.5	116

#	Article	IF	CITATIONS
19	Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials, 2008, 29, 2096-2103.	5.7	131
20	Stem cells and biomimetic materials strategies for tissue engineering. Materials Science and Engineering C, 2008, 28, 1189-1202.	3.8	130
21	Degradation of Electrospun Nanofiber Scaffold by Short Wave Length Ultraviolet Radiation Treatment and Its Potential Applications in Tissue Engineering. Tissue Engineering - Part A, 2008, 14, 1321-1329.	1.6	92
22	Long-term viability of coronary artery smooth muscle cells on poly(<scp> </scp> -lactide- <i>co</i>) Tj ETQq0 0 0 Journal of the Royal Society Interface, 2008, 5, 1109-1118.	0 rgBT /Ov 1.5	verlock 10 Tf 5 32
23	Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts. Bioinspiration and Biomimetics, 2007, 2, 37-41.	1.5	22
24	Internationalization and evolution of application areas of an emerging technology: The case of nanotechnology. Scientometrics, 2007, 70, 715-737.	1.6	42
25	Biomimetic Nanocomposites for Tissue Engineering. Journal of Bionanoscience, 2007, 1, 1-13.	0.4	4
26	NANOTECHNOLOGY PATENT LANDSCAPE 2006. Nano, 2006, 01, 101-113.	0.5	10
27	Biomimetic nanocomposites for bone graft applications. Nanomedicine, 2006, 1, 177-188.	1.7	79