
Dimitri E Khoshtariya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12106973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Charge-Transfer Mechanism for CytochromecAdsorbed on Nanometer Thick Films. Distinguishing Frictional Control from Conformational Gating. Journal of the American Chemical Society, 2003, 125, 7704-7714.	13.7	124
2	Electron-Transfer Dynamics of Cytochrome C: A Change in the Reaction Mechanism with Distance. Angewandte Chemie - International Edition, 2002, 41, 4700-4703.	13.8	80
3	Observation of the Turnover between the Solvent Friction (Overdamped) and Tunneling (Nonadiabatic) Charge-Transfer Mechanisms for a Au/Fe(CN)63-/4- Electrode Process and Evidence for a Freezing Out of the Marcus Barrier. Journal of Physical Chemistry A, 2001, 105, 1818-1829.	2.5	79
4	Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2757-2762.	7.1	76
5	Probing protein hydration by the difference Oî—,H (Oî—,D) vibrational spectroscopy: Interfacial percolation network involving highly polarizable water-water hydrogen bonds. Journal of Molecular Liquids, 2003, 105, 13-36.	4.9	39
6	High-Pressure Testing of Heterogeneous Charge Transfer in a Room-Temperature Ionic Liquid:  Evidence for Solvent Dynamic Control. Journal of Physical Chemistry B, 2008, 112, 3085-3100.	2.6	37
7	Outer-Sphere Metal-Metal Charge-Transfer Transitions in Encounter Complexes of Free Mobile Cyanometalate Ions: Direct Observation of the "Reactive Associate" of Electron-Transfer Reactions. Inorganic Chemistry, 1994, 33, 4038-4040.	4.0	36
8	Solvent Friction Mechanism of an Elementary Charge-Transfer Step and Cation-Regulated Preequilibrium for a Pt/Fe(CN)64-/3-Electrode Process. Journal of Physical Chemistry B, 1998, 102, 7800-7806.	2.6	31
9	Multiple Mechanisms for Electron Transfer at Metal/Selfâ€Assembled Monolayer/Roomâ€Temperature Ionic Liquid Junctions: Dynamical Arrest versus Frictional Control and Nonâ€Adiabaticity. Chemistry - A European Journal, 2009, 15, 5254-5262.	3.3	31
10	Impact of self-assembly composition on the alternate interfacial electron transfer for electrostatically immobilized cytochromec. Biopolymers, 2007, 87, 68-73.	2.4	30
11	Positive Activation Volume for a CytochromeCElectrode Process: Evidence for a "Protein Friction― Mechanism from High-Pressure Studies. Journal of Physical Chemistry B, 2003, 107, 7172-7179.	2.6	26
12	Kinetic, Thermodynamic, and Mechanistic Patterns for Free (Unbound) Cytochromec at Au/SAM Junctions: Impact of Electronic Coupling, Hydrostatic Pressure, and Stabilizing/Denaturing Additives. Chemistry - A European Journal, 2006, 12, 7041-7056.	3.3	26
13	Two-Electron Transfer for Tl(aq)3+/Tl(aq)+Revisited. Common Virtual [TIII-TIII]4+Intermediate for Homogeneous (Superexchange) and Electrode (Sequential) Mechanisms. Inorganic Chemistry, 2002, 41, 1728-1738.	4.0	23
14	Correlations between Spectroscopic, Electrochemical, and Kinetic Properties of Cyano-Bridged Binuclear Complexes. Analyses of Temperature, Pressure, and Solvent Effects. Journal of Physical Chemistry A, 2000, 104, 5535-5544.	2.5	21
15	Optical and Thermal Outer-Sphere Electron Self-Exchange Reaction of the Hexacyanoferrate(II/III) Couple: Comparative Analysis of Band-Shape and Activation Parameters and Large Solvent Kinetic Isotope Effect. The Journal of Physical Chemistry, 1995, 99, 3592-3597.	2.9	20
16	High-Pressure Probing of a Changeover in the Charge-Transfer Mechanism for Intact Cytochromec at Gold/Self-Assembled Monolayer Junctions. Angewandte Chemie - International Edition, 2006, 45, 277-281.	13.8	20
17	Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure. Chemical Communications, 2008, , 2112.	4.1	19
18	Temperature, pressure and solvent isotope effects on the precursor formation constant and reorganization dynamics in outer-sphere charge transfer between free mobile [Fe(CN)6]3? and [Fe(CN)6]4? ions. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1625.	1.7	18

#	Article	IF	CITATIONS
19	Local Dense Structural Heterogeneities in Liquid Water from Ambient to 300 MPa Pressure: Evidence for Multiple Liquid–Liquid Transitions. ChemPhysChem, 2004, 5, 1398-1404.	2.1	18
20	New Evidence for a Quasi-Simultaneous Proton-Coupled Two-Electron Transfer and Direct Wiring for Glucose Oxidase Captured by the Carbon Nanotube–Polymer Matrix. Journal of Physical Chemistry C, 2015, 119, 14900-14910.	3.1	18
21	The solvent friction mechanism for outer-sphere electron exchange at bare metal electrodes. The case of Au/Ru(NH3)63+/2+ redox system. Electrochemistry Communications, 2003, 5, 241-245.	4.7	17
22	Simplicity within the complexity: Bilateral impact of DMSO on the functional and unfolding patterns of α-chymotrypsin. Biophysical Chemistry, 2013, 175-176, 17-27.	2.8	16
23	Discrimination of Diverse (Pressure/Temperature-Dependent/Independent) Inherent Sub-structures in Liquid Water (D2O) from Difference Vibrational Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 14796-14799.	2.6	15
24	A new dynamic elementary act model for thermal and photoinduced proton self-exchange through the lyate ion hydrogen bridges in solutions. Chemical Physics Letters, 1992, 196, 607-613.	2.6	14
25	Fundamental Studies of Long- and Short-Range Electron Exchange Mechanisms between Electrodes and Proteins. Modern Aspects of Electrochemistry, 2011, , 105-238.	0.2	14
26	Long-Range Electron Transfer with Myoglobin Immobilized at Au/Mixed-SAM Junctions: Mechanistic Impact of the Strong Protein Confinement. Journal of Physical Chemistry B, 2014, 118, 692-706.	2.6	13
27	Unusual mechanism for the short-range electron transfer within gold–alkanethiol–ionic-liquid films of subnanometer thickness. Physical Review E, 2009, 80, 065101.	2.1	12
28	Electron transfer with azurin at Au–SAM junctions in contact with a protic ionic melt: impact of glassy dynamics. Physical Chemistry Chemical Physics, 2013, 15, 16515.	2.8	11
29	Compact high pressure unit for ultraviolet-visible-near-infrared spectroscopic measurements at pressures up to 400 MPa. Review of Scientific Instruments, 2003, 74, 3758-3762.	1.3	9
30	Diverse role of conformational dynamics in carboxypeptidase Aâ€driven peptide and ester hydrolyses: Disclosing the "Perfect Induced Fit―and "Protein Local Unfolding―pathways by altering protein stability. Biopolymers, 2011, 95, 852-870.	2.4	9
31	The double-well cage effect for a ferrocyanide/dimethylviologen ion pair in viscous media: kinetic and thermodynamic probings through the CT transition band. Chemical Physics Letters, 1998, 284, 121-127.	2.6	5
32	Electron transfer with self-assembled copper ions at Au-deposited biomimetic films: mechanistic â€~anomalies' disclosed by temperature- and pressure-assisted fast-scan voltammetry. Journal Physics D: Applied Physics, 2015, 48, 255402.	2.8	5
33	Two-equivalent electrochemical reduction of a cyano-complex [TlIII(CN)2]+ and the novel di-nuclear compound [(CN)5PtIIâ~TlIII]0. Electrochimica Acta, 2005, 50, 4444-4450.	5.2	4
34	A simple quantum mechanical elementary act model for Sn2 nucleophilic substitution in aqueous solutions. Computational and Theoretical Chemistry, 1992, 255, 131-144.	1.5	2
35	Notable Stabilization of α-Chymotrypsin by the Protic Ionic Additive, [ch][dhp]: Calorimetric Evidence for a Fine Enthalpy/Entropy Balance. International Scholarly Research Notices, 2014, 2014, 1-6.	0.9	2
36	Electrospinning for building 3D structured photoactive biohybrid electrodes. Bioelectrochemistry, 2021, 142, 107945.	4.6	1

#	Article	IF	CITATIONS
37	The self-assembled, atomically defined, flexible and highly tunable bilayered Au/L-cysteine/Cu(II/I) junctions capable of voltage-gated coherent multiple electron/hole exchange. Nano Futures, 2021, 5, 015001.	2.2	1
38	Molecular dynamics from electronic spectra: A simple approach for donorî—,acceptor complexes of iodine. Computational and Theoretical Chemistry, 1994, 314, 287-293.	1.5	0
39	Electron transfer with myoglobin in free and strongly confined regimes: disclosing diverse mechanistic role of the Fe-coordinated water by temperature- and pressure-assisted voltammetric studies. Journal of Coordination Chemistry, 2015, 68, 3164-3180.	2.2	0