Takahito Ohmura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1210606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy. Acta Materialia, 2018, 149, 377-387.	3.8	168
2	Dislocation–grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. Journal of Materials Research, 2004, 19, 3626-3632.	1.2	127
3	Nanohardness measurement of high-purity Fe–C martensite. Scripta Materialia, 2001, 45, 889-894.	2.6	120
4	Ultra-microindentation of silicon at elevated temperatures. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 74, 1073-1084.	0.8	99
5	Effects of transformation temperature on VC interphase precipitation and resultant hardness in low-carbon steels. Acta Materialia, 2015, 84, 375-384.	3.8	89
6	Evaluation of temper softening behavior of Fe–C binary martensitic steels by nanoindentation. Scripta Materialia, 2003, 49, 1157-1162.	2.6	84
7	Nanoindentation-Induced Deformation Behavior in the Vicinity of Single Grain Boundary of Interstitial-Free Steel. Materials Transactions, 2005, 46, 2026-2029.	0.4	82
8	Mechanical response of dislocation interaction with grain boundary in ultrafine-grained interstitial-free steel. Acta Materialia, 2021, 206, 116621.	3.8	68
9	The combined effect of molybdenum and nitrogen on the fatigued microstructure of 316 type austenitic stainless steel. Scripta Materialia, 1999, 41, 467-473.	2.6	62
10	Plasticity initiation and subsequent deformation behavior in the vicinity of single grain boundary investigated through nanoindentation technique. Journal of Materials Science, 2007, 42, 1728-1732.	1.7	58
11	Relationship between nanohardness and microstructures in high-purity Fe–C as-quenched and quench-tempered martensite. Journal of Materials Research, 2003, 18, 1465-1470.	1.2	57
12	Plasticity Initiation and Evolution during Nanoindentation of an Iron–3% Silicon Crystal. Physical Review Letters, 2014, 112, 145504.	2.9	56
13	A Novel Design Approach for Self-Crack-Healing Structural Ceramics with 3D Networks of Healing Activator. Scientific Reports, 2017, 7, 17853.	1.6	56
14	Evaluation of mechanical properties in nanometer scale using AFM-based nanoindentation tester. Scripta Materialia, 1999, 12, 1049-1052.	0.5	54
15	Nanoindentation load–displacement behavior of pure face centered cubic metal thin films on a hard substrate. Thin Solid Films, 2001, 385, 198-204.	0.8	54
16	Hard metallic glass of tungsten-based alloy. Applied Physics Letters, 2004, 84, 4911-4913.	1.5	49
17	Grain size dependence of the elastic modulus in nanostructured NiTi. Scripta Materialia, 2010, 63, 977-980.	2.6	45
18	Determining suitable parameters for inverse estimation of plastic properties based on indentation marks. International Journal of Plasticity, 2019, 116, 81-90.	4.1	44

TAKAHITO OHMURA

#	Article	IF	CITATIONS
19	Nanoindentation/atomic force microscopy analyses of ε-martensitic transformation and shape memory effect in Fe–28Mn–6Si–5Cr alloy. Scripta Materialia, 2011, 65, 942-945.	2.6	43
20	Unique universal scaling in nanoindentation pop-ins. Nature Communications, 2020, 11, 4177.	5.8	43
21	The effect of interstitial carbon on the initiation of plastic deformation of steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 396-401.	2.6	42
22	Atomistic prediction of the temperature- and loading-rate-dependent first pop-in load in nanoindentation. International Journal of Plasticity, 2019, 121, 280-292.	4.1	41
23	Effects of lattice defects on indentation-induced plasticity initiation behavior in metals. Journal of Materials Research, 2012, 27, 1742-1749.	1.2	38
24	Continuous and discontinuous yielding behaviors in ferrite-cementite steels. Acta Materialia, 2020, 196, 565-575.	3.8	35
25	In-situ transmission electron microscopy investigation of the deformation behavior of spinodal nanostructured δ-ferrite in a duplex stainless steel. Scripta Materialia, 2016, 125, 44-48.	2.6	34
26	Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy. Scientific Reports, 2018, 8, 14264.	1.6	34
27	TEM investigations on lath martensite substructure in quenched Fe-0.2C alloys. Materials Characterization, 2018, 135, 175-182.	1.9	33
28	Microstructural Evolution and Carbides in Quenched Ultra-low Carbon (Fe–C) Alloys. ISIJ International, 2017, 57, 1233-1240.	0.6	32
29	Effect of grain boundary segregation of carbon on critical grain boundary strength of ferritic steel. Scripta Materialia, 2019, 169, 38-41.	2.6	32
30	Effect of Dislocation Density on the Initiation of Plastic Deformation on Fe–C Steels. Materials Transactions, 2012, 53, 907-912.	0.4	30
31	Direct observation of plastic deformation in iron–3% silicon single crystal by in situ nanoindentation in transmission electron microscopy. Scripta Materialia, 2011, 64, 919-922.	2.6	28
32	Electron diffraction analysis of quenched Fe–C martensite. Journal of Materials Science, 2018, 53, 2976-2984.	1.7	28
33	Inhomogeneous nano-mechanical properties in the multi-phase microstructure of long-term aged type 316 stainless steel. Journal of Materials Research, 2006, 21, 1229-1236.	1.2	27
34	Real time observation of martensite transformation for a 0.4C low alloyed steel by neutron diffraction. Acta Materialia, 2020, 184, 30-40.	3.8	27
35	Inverse estimation approach for elastoplastic properties using the load-displacement curve and pile-up topography of a single Berkovich indentation. Materials and Design, 2020, 194, 108925.	3.3	27
36	Characterization of local deformation behavior of Fe–Ni lenticular martensite by nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1869-1874.	2.6	26

#	Article	IF	CITATIONS
37	Pop-In Phenomenon as a Fundamental Plasticity Probed by Nanoindentation Technique. Materials, 2021, 14, 1879.	1.3	25
38	High-performance MgB ₂ superconducting wires for use under liquid-helium-free conditions fabricated using an internal Mg diffusion process. Superconductor Science and Technology, 2013, 26, 125003.	1.8	24
39	In-situ neutron diffraction during tension-compression cyclic deformation of a pearlite steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 522-530.	2.6	24
40	Real time correlation between flow stress and dislocation density in steel during deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 188-193.	2.6	23
41	Evaluation of mechanical properties of ceramic coatings on a metal substrate. Surface and Coatings Technology, 2003, 169-170, 728-731.	2.2	22
42	A Simple Method for Observing <i>ï‰</i> -Fe Electron Diffraction Spots from <112> _{<i>î±</i>-Fe} Directions of Quenched Fe–C Twinned Martensite. ISIJ International, 2018, 58, 159-164.	0.6	22
43	In situ heating TEM observations on carbide formation and $\hat{I}\pm$ -Fe recrystallization in twinned martensite. Scientific Reports, 2018, 8, 14454.	1.6	21
44	Self-healing by design: universal kinetic model of strength recovery in self-healing ceramics. Science and Technology of Advanced Materials, 2020, 21, 593-608.	2.8	21
45	Size Effects on the Mechanical Properties of Nanoporous Graphene Networks. Advanced Functional Materials, 2019, 29, 1900311.	7.8	20
46	Analysis of grain boundary effect of bulk polycrystalline materials through nanomechanical characterization. Journal Physics D: Applied Physics, 2008, 41, 074015.	1.3	19
47	Effect of Low Temperature Aging on Hall-Petch Coefficient in Ferritic Steels Containing a Small Amount of Carbon and Nitrogen. ISIJ International, 2018, 58, 1920-1926.	0.6	18
48	Nanoindentation-induced plasticity in cubic zirconia up to 500ºC. Acta Materialia, 2020, 184, 59-68.	3.8	18
49	Correlation Between the Indentation Properties and Microstructure of Dissimilar Capacitor Discharge Welded WC-Co/High-Speed Steel Joints. Materials, 2020, 13, 2657.	1.3	18
50	Evaluation of Grain Boundary Effect on Strength of Fe–C Low Alloy Martensitic Steels by Nanoindentation Technique. Materials Transactions, 2005, 46, 1301-1305.	0.4	17
51	Dislocation character transition and related mechanical response in a body-centered cubic single crystal. Scripta Materialia, 2012, 67, 388-391.	2.6	17
52	Effect of Low Temperature Aging on Hall-Petch Coefficient in Ferritic Steels Containing a Small Amount of Carbon and Nitrogen. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2017, 103, 491-497.	0.1	16
53	Mechanical Behavior of Individual Retained Austenite Grains in High Carbon Quenched-tempered Steel. ISIJ International, 2019, 59, 559-566.	0.6	16
54	Evaluation of Vickers Hardness by Nanoindentation Measurement Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1998, 64, 2567-2573.	0.2	15

#	Article	IF	CITATIONS
55	Mechanical characterization of secondary-hardening martensitic steel using nanoindentation. Journal of Materials Research, 2004, 19, 79-84.	1.2	15
56	Alteration in nanohardness of matrix phase associated with precipitation during long-term aging of type 316 stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 489, 85-92.	2.6	15
57	Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten. Journal of Materials Science and Technology, 2022, 105, 242-258.	5.6	15
58	Hardness of 12Cr8Mo ferritic steels irradiated by Ni ions. Journal of Nuclear Materials, 1995, 225, 187-191.	1.3	14
59	Matrix strength evaluation of ultra-fine grained steel by nanoindentation. Journal of Materials Research, 2004, 19, 347-350.	1.2	14
60	Evaluation of matrix strength in ultra-fine grained pure Al by nanoindentation. Journal of Materials Research, 2009, 24, 2917-2923.	1.2	14
61	Strength evaluation of <i>α</i> and <i>β</i> phases by nanoindentation in Ti–15Mo alloys with Fe and Al addition. Materials Science and Technology, 2012, 28, 342-347.	0.8	14
62	Fabrication of MgB ₂ superconducting wires with a hybrid method combining internal-Mg-diffusion and powder-in-tube processes. Superconductor Science and Technology, 2014, 27, 055017.	1.8	14
63	Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti ₂ AlC. Materials Transactions, 2018, 59, 771-778.	0.4	14
64	Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminium alloy. International Journal of Lightweight Materials and Manufacture, 2018, 1, 142-156.	1.3	14
65	Softening and compressive twinning in nanosecond ultraviolet pulsed laser-treated Ti6Al4V. Scripta Materialia, 2016, 113, 139-144.	2.6	13
66	Multi-scaled heterogeneous deformation behavior of pearlite steel studied by in situ neutron diffraction. Scripta Materialia, 2017, 140, 45-49.	2.6	13
67	<i>In situ</i> Neutron Diffraction Study on Ferrite and Pearlite Transformations for a 1.5Mn-1.5Si-0.2C Steel. ISIJ International, 2018, 58, 2125-2132.	0.6	13
68	Randomization of Ferrite/austenite Orientation Relationship and Resultant Hardness Increment by Nitrogen Addition in Vanadium-microalloyed Low Carbon Steels Strengthened by Interphase Precipitation. ISIJ International, 2018, 58, 542-550.	0.6	13
69	Evaluation of the matrix strength of Fe-0.4 wt% C tempered martensite using nanoindentation techniques. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1903-1910.	0.8	12
70	ãfŠãfŽã, ¤ f³ãf‡ãf³ãf†ãf¼ã,•ãf§ãf³ã«ã,^ã,<朖™è©•価. Materia Japan, 2007, 46, 251-258.	0.1	12
71	Nano-Indentation Properties of Tungsten Carbide-Cobalt Composites as a Function of Tungsten Carbide Crystal Orientation. Materials, 2020, 13, 2137.	1.3	12
72	Evaluation of Grain Boundary Strength through Nanoindentation Technique. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 40-48.	0.2	12

#	Article	IF	CITATIONS
73	Quantification of Large Deformation with Punching in Dual Phase Steel and Change of its Microstructure –Part I: Proposal of the Quantification Technique of the Punching Damage of the Dual Phase Steel. ISIJ International, 2016, 56, 2068-2076.	0.6	11
74	Bainite Transformation and Resultant Tensile Properties of 0.6%C Low Alloyed Steels with Different Prior Austenite Grain Sizes. ISIJ International, 2021, 61, 582-590.	0.6	11
75	Temperature-dependent deformation behavior of γ and γ′ single-phase nickel-based superalloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 818, 141439.	2.6	11
76	High-throughput evaluation of stress–strain relationships in Ni–Co–Cr ternary systems via indentation testing of diffusion couples. Journal of Alloys and Compounds, 2022, 910, 164868.	2.8	11
77	Evaluation of the matrix strength of Fe-0.4 wt% C tempered martensite using nanoindentation techniques. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1903-1910.	0.8	9
78	Microstructure and mechanical properties of Ir–Ta coatings on nickel-base single-crystal superalloy TMS-75. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1208-1217.	0.9	9
79	Behaviour of Ir–24 at%Ta films on Ni based single crystal superalloys. Surface Engineering, 2005, 21, 53-59.	1.1	9
80	Degradation analysis of REBCO coils. Superconductor Science and Technology, 2014, 27, 085014.	1.8	9
81	Ferroelastic and plastic behaviors in pseudo-single crystal micropillars of nontransformable tetragonal zirconia. Acta Materialia, 2021, 203, 116471.	3.8	9
82	Effects of Grain Boundary Geometry and Boron Addition on the Local Mechanical Behavior of Interstitial-Free (IF) Steels. Materials Transactions, 2021, 62, 1479-1488.	0.4	9
83	A New Approach for Interpretation of Strengthening Mechanism of Martensitic Steel through Characterization of Local Deformation Behavior. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 295-310.	0.1	8
84	Mechanical properties and dislocation character of YB4 and YB6. Intermetallics, 2017, 89, 86-91.	1.8	8
85	Nano-Indentation Measurement for Heat Resistant Alloys at Elevated Temperatures in Inert Atmosphere. Materials Transactions, 2019, 60, 1411-1415.	0.4	8
86	The effect of boundary or interface on stress-induced martensitic transformation in a Fe-Ni alloy. Materials Today Communications, 2020, 23, 100896.	0.9	8
87	Multiscale analyses of the interaction between dislocation and Σ9 symmetric tilt grain boundaries in Fe–Si bicrystals by nanoindentation technique. International Journal of Plasticity, 2021, 145, 103047.	4.1	8
88	Effect of Solute Carbon on Onset of Local Plastic Deformation in BCC Iron. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 372-381.	0.1	8
89	Microstructure effect on nanohardness distribution for medium-carbon martensitic steel. Science in China Series D: Earth Sciences, 2006, 49, 10-19.	0.9	7
90	Application of Nanoindentation Technique in Martensitic Structures. , 0, , .		7

#	Article	IF	CITATIONS
91	In-situ transmission electron microscopy investigation of compressive deformation in interphase-precipitatedÂcarbide-strengthened α-iron single-crystal nanopillars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 406-415.	2.6	7
92	Martensitic phase transformation and pop-in in compression of austenitic steel nanoplates observed in situ by transmission electron microscopy. Materials Letters, 2012, 75, 107-110.	1.3	6
93	The critical current properties of 37-filament internal Mg diffusion-processed MgB2wires. Superconductor Science and Technology, 2013, 26, 105027.	1.8	6
94	Local Mechanical Behavior Related to Materials Properties >^ ^mdash;A Grand Challenge through Nano-Mechanical Characterization^ ^mdash;. Materia Japan, 2014, 53, 312-320.	0.1	6
95	Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 54-64.	2.6	6
96	Evaluation of Grain Boundary Effect on the Strength of Fe-C Martensitic Steels through Nanoindentation Technique. Materials Science Forum, 2005, 475-479, 4113-4116.	0.3	5
97	Dislocation Theories Applied to the Elucidation of Mechanisms of Metal Strengthening. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1076-1088.	0.1	5
98	Hardness modification of Al–Mg–Si alloy by using energetic ion beam irradiation. Nuclear Instruments & Methods in Physics Research B, 2015, 351, 1-5.	0.6	5
99	Determination of the Yield Radius and Yield Stress in 2198-T3 Aluminum Alloy by Means of the Dual-Scale Instrumented Indentation Test. Materials Transactions, 2019, 60, 1450-1456.	0.4	5
100	Recent Advances in Indentation Techniques and Their Application to Mechanical Characterization. Materials Transactions, 2021, 62, 563-569.	0.4	5
101	Radiation-induced swelling and softening in magnesium aluminate spinel irradiated with high-flux Cuâ^' ions. Journal of Nuclear Materials, 2004, 326, 211-216.	1.3	4
102	Analysis of local deformation behavior in metallic materials through nanoindentation technique. Keikinzoku/Journal of Japan Institute of Light Metals, 2013, 63, 65-72.	0.1	4
103	Mechanical and fracture behaviour of the three-scale hierarchy structure in As-deposited and annealed nanocrystalline electrodeposited Ni–Fe alloys. Journal of Materials Science, 2019, 54, 13378-13393.	1.7	4
104	Influence of carbon concentration and magnetic transition on the austenite lattice parameter of 30Mn-C steel. Materials Characterization, 2020, 163, 110243.	1.9	4
105	Direct observation of grain boundary formation in bcc iron through TEM in situ compression test. Scripta Materialia, 2022, 207, 114275.	2.6	4
106	Quantification of Large Deformation with Punching in Dual Phase Steel and Change of its' Microstructure – Part III: Micro-tensile Behavior of Pre-strained Dual-phase Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 260-267.	0.1	4
107	Indentation-Induced Deformation Behavior in Martensitic Steel Observed through In Situ Nanoindentation in a Transmission Electron Microscopy. Materials Science Forum, 2006, 503-504, 239-244.	0.3	3
108	Quantification of Large Deformation with Punching in Dual Phase Steel and Change of its Microstructure –Part III: Micro-tensile Behavior of Pre-strained Dual-phase Steel. ISIJ International, 2016, 56, 2084-2092.	0.6	3

TAKAHITO OHMURA

#	Article	IF	CITATIONS
109	Effect of Indentation Orientation on the Onset of Plastic Deformation for a MAX Phase Ti ₂ AlC. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 162-168.	0.2	3
110	Analysis of deformation behavior in beta titanium alloys using TEM in-situ observation. Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69, 273-280.	0.1	3
111	Local Deformation Behavior of the Copper Harmonic Structure near Grain Boundaries Investigated through Nanoindentation. Materials, 2021, 14, 5663.	1.3	3
112	Evaluation of matrix strength of Fe-C as-quenched and quench-tempered martensite using nanoindentation techniques. European Physical Journal Special Topics, 2003, 112, 267-270.	0.2	3
113	Nanomechanical Analysis of SUS304L Stainless Steel with Bimodal Distribution in Grain Size. Materials Transactions, 2022, 63, 545-554.	0.4	3
114	Nanoindentation Apparatus and Method of Operation. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2000, 51, 255-261.	0.1	2
115	Effect of Inhomogeneity of Carbide Precipitation on Nanohardness Distribution for Martensitic Steels. Materials Science Forum, 2005, 475-479, 4109-4112.	0.3	2
116	Evaluationof fracture toughness ofalpha-Nb5Si3 by micro-sized cantilever beam testing. Materials Research Society Symposia Proceedings, 2015, 1760, 187.	0.1	2
117	Effects of Grain Boundary Geometry and Boron Addition on the Local Mechanical Behavior of Interstitial-Free (IF) Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 30-39.	0.2	2
118	Direct Characterization of the Relation between the Mechanical Response and Microstructure Evolution in Aluminum by Transmission Electron Microscopy In Situ Straining. Materials, 2021, 14, 1431.	1.3	2
119	Analytical approach for pop-in and post-pop-in deformation behavior during nanoindentation: effect of solute Si in interstitial free steel. Journal of Materials Research, 2021, 36, 2571-2581.	1.2	2
120	Macroscopic viscoelastic deformation at room temperature in mechanically rejuvenated Zr-based metallic glass. MRS Communications, 2021, 11, 330-335.	0.8	2
121	Experience of Osteogenetic Therapy with Advanceded Bio-Artificial Bone - a Study in 25 Cases. Key Engineering Materials, 2004, 254-256, 1075-1078.	0.4	1
122	Evaluation of Mechanical Properties by Nanoindentation. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 18-22.	0.0	1
123	Treatment of Pseudoarthrosis Using Tissue-Engineered Bone Graft. Key Engineering Materials, 2005, 284-286, 1057-1060.	0.4	1
124	Elastic properties of heat resistant steels after long-term creep exposure. Materials at High Temperatures, 2008, 25, 179-185.	0.5	1
125	3D Observation on Nano-sized VC Precipitates Formed in a Low Carbon Steel through Interphase Precipitation. Materia Japan, 2016, 55, 593-593.	0.1	1
126	The evaluation of the composition dependence of fracture toughness of Al3Nb alloys by using micro-size fracture testing. MRS Advances, 2017, 2, 1405-1410.	0.5	1

TAKAHITO OHMURA

#	Article	IF	CITATIONS
127	Mechanical characterization of secondary-hardening martensitic steel using nanoindentation. , 2004, 19, 79.		1
128	Sensitivity analysis of indentation and inverse estimation of elastoplastic property. The Proceedings of the Materials and Mechanics Conference, 2018, 2018, OS0903.	0.0	1
129	Nanomechanical Characterization of Metallic Materials. , 2022, , 157-195.		1
130	Nano-mechanical and Sub-micro-structural Characterization of Spot-Laser-Quenched Carbon Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2022, , .	0.1	1
131	Recent global trends in structural materials research. Science and Technology of Advanced Materials, 2013, 14, 010301.	2.8	Ο
132	B11-P-11The effect of aging on the phase transformation of AA7050 aluminum alloys. Microscopy (Oxford, England), 2015, 64, i83.2-i83.	0.7	0
133	Application of Radio Frequency Glow Discharge Sputtering for Nanoindentation Sample Preparation. Journal of Materials Engineering and Performance, 2017, 26, 1245-1250.	1.2	0
134	Nano-indentation Measurement for Heat Resistant Alloys at Elevated Temperatures in Inert Atmosphere. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2019, 2019, 1010B1245.	0.0	0
135	OS06W0420 Nanoindentation technique as a probe for characteristic deformation size. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, _OS06W0420OS06W0420.	0.0	0
136	Prospects of Nanoindentation and Related Techniques. Journal of the Japan Society for Precision Engineering, 2013, 79, 1181-1184.	0.0	0
137	Evaluation of Mechanical Properties by Nano-scale Characterization. Journal of the Japan Society for Technology of Plasticity, 2013, 54, 886-890.	0.0	Ο
138	107 Dislocation motion and local deformation behavior of BCC metals. The Proceedings of the Computational Mechanics Conference, 2015, 2015.28, _107-1107-2	0.0	0
139	Quantification of Large Deformation with Punching in Dual Phase Steel and Change of its' Microstructure – Part I: Proposal of the Quantification Technique of the Punching Damage of the Dual Phase Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 244-252.	0.1	0
140	Analysis of pseudoelastic behavior of Gum Metal by Nanoindentation. The Proceedings of Ibaraki District Conference, 2017, 2017.25, 423.	0.0	0
141	Effect of phase stability on deformation mechanism of β titanium alloy. The Proceedings of Ibaraki District Conference, 2018, 2018.26, 414.	0.0	Ο
142	Physical modeling of intermittent plasticity during indentation-induced deformation in BCC metals. The Proceedings of the Computational Mechanics Conference, 2018, 2018.31, 284.	0.0	0
143	Local Mechanical Response of Cold Worked Beta-Type Titanium Alloy. The Proceedings of Ibaraki District Conference, 2018, 2018.26, 405.	0.0	0
144	Nano-indentation Measurement for Heat Resistant Alloys at Elevated Temperatures in Inert Atmosphere. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS1802.	0.0	0

#	Article	IF	CITATIONS
145	Effect of grain boundaries on local mechanical response in Î ² type titanium alloy. The Proceedings of Ibaraki District Conference, 2020, 2020.28, 416.	0.0	0
146	<i>In situ</i> Neutron Diffraction on Ferrite and Pearlite Transformations for a 1.5Mn-1.5Si-0.2C Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 262-271.	0.1	0
147	Effect of phase stability on local mechanical behavior in beta type titanium alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 2020, 70, 429-431.	0.1	0