
Iryna Makarava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1210585/publications.pdf Version: 2024-02-01

Ισννίλ Μλκλσλυλ

#	Article	IF	CITATIONS
1	Environmental Assessment of Global Magnesium Production. Mineral Processing and Extractive Metallurgy Review, 2023, 44, 389-406.	5.0	7
2	Enhanced acid leaching of rare earths from NdCeFeB magnets. Minerals Engineering, 2022, 179, 107446.	4.3	5
3	Magnesium Life Cycle in Automotive Industry. Procedia CIRP, 2022, 105, 589-594.	1.9	15
4	Global environmental cost of using rare earth elements in green energy technologies. Science of the Total Environment, 2022, 832, 155022.	8.0	48
5	Efficient separation of precious metals from computer waste printed circuit boards by hydrocyclone and dilution-gravity methods. Journal of Cleaner Production, 2021, 286, 125505.	9.3	34
6	Selective acid leaching of rare earth elements from roasted NdFeB magnets. Separation and Purification Technology, 2021, 278, 119571.	7.9	14
7	One-step recovery of REE oxalates in electro-leaching of spent NdFeB magnets. Separation and Purification Technology, 2020, 251, 117362.	7.9	20
8	Surface and corrosion properties of AA6063-T5 aluminum alloy in molybdate-containing sodium chloride solutions. Corrosion Science, 2020, 171, 108658.	6.6	52
9	Effect of thiourea on electrocrystallization of Cu–Sn alloys from sulphate electrolytes. Surface and Coatings Technology, 2020, 399, 126137.	4.8	8
10	Electrochemical leaching of rare-earth elements from spent NdFeB magnets. Hydrometallurgy, 2020, 192, 105264.	4.3	32
11	The Deposition Mechanism and Protective Properties of Manganese-Based Conversion Coatings on the Surface of AD31 Aluminum Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 113-124.	1.1	4
12	Protective Action of Sodium Metavanadate Against Corrosion of AD31 Aluminum Alloy in Neutral Chloride-Containing Media. Russian Journal of Physical Chemistry A, 2020, 94, 874-879.	0.6	5
13	Corrosion properties of nickel coatings obtained from aqueous and nonaqueous electrolytes. Surface and Interface Analysis, 2019, 51, 943-953.	1.8	7
14	Nickel-nanodiamond coatings electrodeposited from tartrate electrolyte at ambient temperature. Surface and Coatings Technology, 2019, 380, 125063.	4.8	31
15	Corrosion Inhibition of AD31 Alloy by Cerium Nitrate (III) and Sodium Metavanadate. Materials Today: Proceedings, 2019, 6, 164-170.	1.8	3
16	Tin–Nickel–Titania Composite Coatings. Inorganic Materials, 2019, 55, 568-575.	0.8	5
17	Corrosion Behavior in Acid and Alkaline Media of Nickel Coatings Deposited at Room Temperature. Russian Journal of Applied Chemistry, 2018, 91, 1441-1450.	0.5	11

18 КОÐÐЎЗÐ~ОÐÐЎЕ ÐŸÐžÐ'ЕДЕÐÐ~Е ÐÐ~КЕÐ>ЕÐ'ЫÐ¥ ПОКÐЫТÐ~Й, ОСÐЖДЕÐÐЫХПÐÐ~@ŠĐžĐœÐ

Iryna Makarava

#	Article	IF	CITATIONS
19	Corrosion resistance of nickel coatings deposited from low-temperature nickel-plating electrolytes. Russian Journal of Applied Chemistry, 2017, 90, 566-573.	0.5	13
20	Electrodeposition of a nickel coating from a low-temperature acetate-chloride nickel-plating electrolyte. Russian Journal of Electrochemistry, 2015, 51, 281-285.	0.9	7
21	Specific features of electrodeposition of Ni-SiO2 micromounting composite coatings from complex electrolytes. Russian Journal of Applied Chemistry, 2014, 87, 1235-1239.	0.5	8
22	Electrodeposition of Nickel and Composite Nickel-fullerenol Coatings from Low-temperature Sulphate-chloride-isobutyrate Electrolyte. Procedia Chemistry, 2014, 10, 373-377.	0.7	13