Jinquan Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1210427/publications.pdf

Version: 2024-02-01

136950 182427 2,707 63 32 51 citations h-index g-index papers 63 63 63 2418 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: Mechanism, performance, and stability. Journal of Hazardous Materials, 2016, 318, 154-163.	12.4	164
2	New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chemical Engineering Journal, 2014, 250, 137-147.	12.7	135
3	Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal–organic framework MIL-53(Fe) with Fe ^{II} hixed-valence coordinatively unsaturated iron center. Catalysis Science and Technology, 2017, 7, 1129-1140.	4.1	132
4	Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Applied Catalysis A: General, 2018, 549, 82-92.	4.3	131
5	Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresource Technology, 2010, 101, 4577-4583.	9.6	124
6	Metal–organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of Orange G through persulfate activation. RSC Advances, 2016, 6, 112502-112511.	3.6	115
7	Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater. Journal of Hazardous Materials, 2019, 377, 163-171.	12.4	107
8	Fe/S doped granular activated carbon as a highly active heterogeneous persulfate catalyst toward the degradation of Orange G and diethyl phthalate. Journal of Colloid and Interface Science, 2014, 418, 330-337.	9.4	94
9	Fe-N-C catalyst with Fe-NX sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalytic mechanism. Journal of Hazardous Materials, 2022, 424, 127380.	12.4	91
10	Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole. Chemical Engineering Journal, 2020, 394, 125044.	12.7	83
11	Effect of beating on recycled properties of unbleached eucalyptus cellulose fiber. Carbohydrate Polymers, 2012, 87, 730-736.	10.2	80
12	Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron. Science of the Total Environment, 2016, 562, 889-897.	8.0	75
13	Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole:Design, degradation pathways, and mechanism. Journal of Hazardous Materials, 2022, 429, 128299.	12.4	74
14	Insight into degradation mechanism of sulfamethoxazole by metal-organic framework derived novel magnetic Fe@C composite activated persulfate. Journal of Hazardous Materials, 2021, 414, 125598.	12.4	67
15	Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose, 2010, 17, 329-338.	4.9	64
16	Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron. RSC Advances, 2015, 5, 99935-99943.	3.6	61
17	Adsorption properties and mechanisms of novel biomaterials from banyan aerial roots via simple modification for ciprofloxacin removal. Science of the Total Environment, 2020, 708, 134630.	8.0	59
18	Efficient degradation of Orange G with persulfate activated by recyclable FeMoO4. Chemosphere, 2019, 214, 642-650.	8.2	56

#	Article	IF	Citations
19	Sustainable synthesis of modulated Fe-MOFs with enhanced catalyst performance for persulfate to degrade organic pollutants. Science of the Total Environment, 2020, 701, 134806.	8.0	56
20	ZSM-5-(C@Fe) activated peroxymonosulfate for effectively degrading ciprofloxacin: In-depth analysis of degradation mode and degradation path. Journal of Hazardous Materials, 2020, 398, 123024.	12.4	54
21	Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City. PLoS ONE, 2015, 10, e0118776.	2.5	52
22	Enhanced electro-Fenton catalytic performance with in-situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism. Chemosphere, 2021, 273, 130269.	8. 2	50
23	Multiâ€objective optimisation for design and operation of anaerobic digestion using <scp>GAâ€ANN</scp> and <scp>NSGAâ€II</scp> . Journal of Chemical Technology and Biotechnology, 2016, 91, 226-233.	3.2	47
24	Water stable SiO2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium. Journal of Hazardous Materials, 2021, 411, 125194.	12.4	46
25	Reduced graphene oxide-supported metal organic framework as a synergistic catalyst for enhanced performance on persulfate induced degradation of trichlorophenol. Chemosphere, 2020, 240, 124849.	8.2	44
26	Metal–Carbon Hybrid Electrocatalysts Derived from Ionâ€Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction. Small, 2016, 12, 2768-2774.	10.0	37
27	Targeted degradation of dimethyl phthalate by activating persulfate using molecularly imprinted Fe-MOF-74. Chemosphere, 2021, 270, 128620.	8.2	37
28	Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Research, 2021, 203, 117541.	11.3	36
29	Facile construction of highly reactive and stable defective iron-based metal organic frameworks for efficient degradation of Tetrabromobisphenol A via persulfate activation. Environmental Pollution, 2020, 256, 113399.	7.5	35
30	Facile preparation of iron oxide doped Fe-MOFs-MW as robust peroxydisulfate catalyst for emerging pollutants degradation. Chemosphere, 2020, 254, 126798.	8.2	34
31	Selective removal and persulfate catalytic decomposition of diethyl phthalate from contaminated water on modified MIL100 through surface molecular imprinting. Chemosphere, 2020, 240, 124875.	8.2	33
32	Fe@C activated peroxymonosulfate system for effectively degrading emerging contaminants: Analysis of the formation and activation mechanism of Fe coordinately unsaturated metal sites. Journal of Hazardous Materials, 2021, 419, 126535.	12.4	33
33	In situ synthesis of FeOCl@MoS2 on graphite felt as novel electro-Fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH. Chemosphere, 2021, 273, 129747.	8.2	32
34	Tailored d-Band Facilitating in Fe Gradient Doping CuO Boosts Peroxymonosulfate Activation for High Efficiency Generation and Release of Singlet Oxygen. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49982-49992.	8.0	32
35	Temporal and spatial variations of contaminant removal, enzyme activities, and microbial community structure in a pilot horizontal subsurface flow constructed wetland purifying industrial runoff. Environmental Science and Pollution Research, 2016, 23, 8565-8576.	5.3	30
36	Fiber properties of eucalyptus kraft pulp with different carboxyl group contents. Cellulose, 2013, 20, 2839-2846.	4.9	29

#	Article	IF	Citations
37	Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors. Environmental Science and Pollution Research, 2020, 27, 9152-9166.	5.3	24
38	Targeted degradation of TBBPA using novel molecularly imprinted polymer encapsulated C-Fe-Nx nanocomposite driven from MOFs. Journal of Hazardous Materials, 2022, 424, 127499.	12.4	24
39	A novel polydopamine-modified metal organic frameworks catalyst with enhanced catalytic performance for efficient degradation of sulfamethoxazole in wastewater. Chemosphere, 2022, 297, 134100.	8.2	20
40	Modeling a Paper-Making Wastewater Treatment Process by Means of an Adaptive Network-Based Fuzzy Inference System and Principal Component Analysis. Industrial & Engineering Chemistry Research, 2012, 51, 6166-6174.	3.7	17
41	Facile formation of silver nanoparticles as plasmonic photocatalysts for hydrogen production. RSC Advances, 2016, 6, 106031-106034.	3.6	17
42	A supramolecular structure insight for conversion property of cellulose in hot compressed water: Polymorphs and hydrogen bonds changes. Carbohydrate Polymers, 2015, 133, 94-103.	10.2	15
43	Insights into the synergy of zero-valent iron and copper oxide in persulfate oxidation of Orange G solutions. Research on Chemical Intermediates, 2016, 42, 481-497.	2.7	15
44	Investigation of factors affecting the physicochemical properties and degradation performance of nZVI@mesoSiO2 nanocomposites. Journal of Materials Science, 2019, 54, 7483-7502.	3.7	14
45	Effects of wet-pressing induced fiber hornification on hydrogen bonds of cellulose and on properties of eucalyptus paper sheets. Holzforschung, 2018, 72, 829-837.	1.9	13
46	Occurrence and risk assessment of antibiotics in multifunctional reservoirs in Dongguan, China. Environmental Science and Pollution Research, 2020, 27, 13565-13574.	5.3	13
47	Catalytic hydrolysis of cellulose by phosphotungstic acid–supported functionalized metal-organic frameworks with different electronegative groups. Environmental Science and Pollution Research, 2019, 26, 15345-15353.	5.3	12
48	Synthesis of phosphotungstic acid-supported versatile metal–organic framework PTA@MIL-101(Fe)–NH ₂ –Cl. RSC Advances, 2015, 5, 97589-97597.	3.6	11
49	Structure and Succession of Bacterial Communities of the Granular Sludge during the Initial Stage of the Simultaneous Denitrification and Methanogenesis Process. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	10
50	Electrocatalytic oxidation of ciprofloxacin by Co-Ce-Zr \hat{l}^3 -Al2O3 three-dimensional particle electrode. Environmental Science and Pollution Research, 2021, 28, 43815-43830.	5.3	10
51	A GA-Based Neural Fuzzy System for Modeling a Paper Mill Wastewater Treatment Process. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 13500-13507.	3.7	9
52	Mathematical modelling of the internal circulation anaerobic reactor by Anaerobic Digestion Model No. 1, simultaneously combined with hydrodynamics. Scientific Reports, 2019, 9, 6249.	3.3	9
53	Modeling of a paper-making wastewater treatment process using a fuzzy neural network. Korean Journal of Chemical Engineering, 2012, 29, 636-643.	2.7	7
54	Spatial variations in the N ₂ O emissions and denitrification potential of riparian buffer strips in a contaminated urban river. Chemistry and Ecology, 2013, 29, 529-539.	1.6	7

#	Article	IF	CITATIONS
55	Macroscopic and microscopic properties of fibers after enzymatic deinking of mixed office waste paper. Cellulose, 2019, 26, 9863-9875.	4.9	7
56	Application of Novel Amino-Functionalized NZVI@SiO ₂ Nanoparticles to Enhance Anaerobic Granular Sludge Removal of 2,4,6-Trichlorophenol. Bioinorganic Chemistry and Applications, 2015, 2015, 1-12.	4.1	6
57	Fiber characterization of old corrugated container bleached pulp with laccase and glycine pretreatment. Biomass Conversion and Biorefinery, 2023, 13, 583-592.	4.6	6
58	Enhanced photocatalytic activity of AgNPs-in-CNTs with hydrogen peroxide under visible light irradiation. Environmental Science and Pollution Research, 2019, 26, 26389-26396.	5.3	5
59	A comprehensive model of N2O emissions in an anaerobic/oxygen-limited aerobic process under dynamic conditions. Bioprocess and Biosystems Engineering, 2020, 43, 1093-1104.	3.4	4
60	Quantitative structure–activity relationship for the partition coefficient of hydrophobic compounds between silicone oil and air. Environmental Science and Pollution Research, 2018, 25, 15641-15650.	5.3	2
61	Efficient Shaping of Cellulose Nanocrystals Based on Allomorphic Modification: Understanding the Correlation between Morphology and Allomorphs. Biomacromolecules, 2022, 23, 687-698.	5.4	1
62	Polymer Technology for the Detection and Elimination of Emerging Pollutants. Advances in Polymer Technology, 2020, 2020, 1-2.	1.7	0
63	Modeling the Performance of Full-Scale Anaerobic Biochemical System Treating Deinking Pulp Wastewater Based on Modified Anaerobic Digestion Model No. 1. Frontiers in Microbiology, 2021, 12, 755398.	3.5	0