Gerardo Biella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12100943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional Liposomes Modulate Purinergic Receptor-Induced Calcium Wave in Cerebral Microvascular Endothelial Cells and Astrocytes: New Insights for Alzheimer's disease. Molecular Neurobiology, 2021, 58, 2824-2835.	4.0	5
2	<i>SREBP2</i> gene therapy targeting striatal astrocytes ameliorates Huntington's disease phenotypes. Brain, 2021, 144, 3175-3190.	7.6	17
3	IO6â€SREBP2 delivery to striatal astrocytes normalizes transcription of cholesterol biosynthesis genes and ameliorates pathological features in huntington's disease. , 2021, , .		0
4	NMDA receptors elicit flux-independent intracellular Ca2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells. Cell Calcium, 2021, 99, 102454.	2.4	18
5	Stem Cell-Derived Human Striatal Progenitors Innervate Striatal Targets and Alleviate Sensorimotor Deficit in a Rat Model of Huntington Disease. Stem Cell Reports, 2020, 14, 876-891.	4.8	24
6	Striatal infusion of cholesterol promotes doseâ€dependent behavioral benefits and exerts diseaseâ€modifying effects in Huntington's disease mice. EMBO Molecular Medicine, 2020, 12, e12519.	6.9	13
7	Piriform cortex ictogenicity in vitro. Experimental Neurology, 2019, 321, 113014.	4.1	9
8	Oxytocin Increases Phasic and Tonic GABAergic Transmission in CA1 Region of Mouse Hippocampus. Frontiers in Cellular Neuroscience, 2019, 13, 178.	3.7	23
9	Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington's disease. Journal of Clinical Investigation, 2019, 129, 2390-2403.	8.2	38
10	I14â€Translational potential of cholesterol supplementation-based strategies for huntington's disease. , 2018, , .		1
11	Differentiation of human telencephalic progenitor cells into MSNs by inducible expression of Gsx2 and Ebf1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1234-E1242.	7.1	28
12	Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. ELife, 2017, 6, .	6.0	63
13	Loss of Either Rac1 or Rac3 GTPase Differentially Affects the Behavior of Mutant Mice and the Development of Functional GABAergic Networks. Cerebral Cortex, 2016, 26, bhv274.	2.9	27
14	Molecular and functional definition of the developing human striatum. Nature Neuroscience, 2014, 17, 1804-1815.	14.8	65
15	Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development (Cambridge), 2013, 140, 301-312.	2.5	146
16	Human Pluripotent Stem Cell Differentiation into Authentic Striatal Projection Neurons. Stem Cell Reviews and Reports, 2013, 9, 461-474.	5.6	60
17	Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons. Molecular and Cellular Neurosciences, 2012, 49, 395-405.	2.2	26
18	Preservation of positional identity in fetus-derived neural stem (NS) cells from different mouse central nervous system compartments. Cellular and Molecular Life Sciences, 2011, 68, 1769-1783.	5.4	34

GERARDO BIELLA

#	Article	IF	CITATIONS
19	Functional Interactions Within the Parahippocampal Region Revealed by Voltage-Sensitive Dye Imaging in the Isolated Guinea Pig Brain. Journal of Neurophysiology, 2010, 103, 725-732.	1.8	14
20	Retinoic acid―and phorbol esterâ€induced neuronal differentiation downâ€regulates caveolin expression in GnRH neurons. Journal of Neurochemistry, 2008, 104, 1577-1587.	3.9	9
21	Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Molecular and Cellular Neurosciences, 2008, 38, 245-258.	2.2	199
22	Resurgent Na+current in pyramidal neurones of rat perirhinal cortex: axonal location of channels and contribution to depolarizing drive during repetitive firing. Journal of Physiology, 2007, 582, 1179-1193.	2.9	27
23	A Novel High Channel-Count System for Acute Multisite Neuronal Recordings. IEEE Transactions on Biomedical Engineering, 2006, 53, 1672-1677.	4.2	18
24	Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell. PLoS Biology, 2005, 3, e283.	5.6	761
25	Cytoarchitectonic characterization of the parahippocampal region of the guinea pig. Journal of Comparative Neurology, 2004, 474, 289-303.	1.6	26
26	Slow Periodic Events and Their Transition to Gamma Oscillations in the Entorhinal Cortex of the Isolated Guinea Pig Brain. Journal of Neurophysiology, 2003, 90, 39-46.	1.8	43
27	Propagation of Neuronal Activity along the Neocortical–Perirhinal–Entorhinal Pathway in the Guinea Pig. Journal of Neuroscience, 2002, 22, 9972-9979.	3.6	55
28	Associative Interactions Within the Superficial Layers of the Entorhinal Cortex of the Guinea Pig. Journal of Neurophysiology, 2002, 88, 1159-1165.	1.8	24
29	Network Activity Evoked by Neocortical Stimulation in Area 36 of the Guinea Pig Perirhinal Cortex. Journal of Neurophysiology, 2001, 86, 164-172.	1.8	45
30	Discharge threshold is enhanced for several seconds after a single interictal spike in a model of focal epileptogenesis. European Journal of Neuroscience, 2001, 14, 174-178.	2.6	30
31	Olfactory Inputs Activate the Medial Entorhinal Cortex Via the Hippocampus. Journal of Neurophysiology, 2000, 83, 1924-1931.	1.8	81
32	Evidence for Spatial Modules Mediated by Temporal Synchronization of Carbachol-Induced Gamma Rhythm in Medial Entorhinal Cortex. Journal of Neuroscience, 2000, 20, 7846-7854.	3.6	78
33	Arterial supply of limbic structures in the guinea pig. , 1999, 411, 674-682.		25
34	Simultaneous investigation of the neuronal and vascular compartments in the guinea pig brain isolated in vitro. Brain Research Protocols, 1998, 3, 221-228.	1.6	79
35	Activity-Dependent pH Shifts and Periodic Recurrence of Spontaneous Interictal Spikes in a Model of Focal Epileptogenesis. Journal of Neuroscience, 1998, 18, 7543-7551.	3.6	144
36	Persistent Excitability Changes in the Piriform Cortex of the Isolated Guinea-pig Brain after Transient Exposure to Bicuculline. European Journal of Neuroscience, 1997, 9, 435-451.	2.6	40

GERARDO BIELLA

#	Article	IF	CITATIONS
37	Propagation of epileptiform potentials in the guinea-pig piriform cortex is sustained by associative fibres. Epilepsy Research, 1996, 24, 137-146.	1.6	16
38	Interactions between Associative Synaptic Potentials in the Piriform Cortex of theIn Vitrolsolated Guinea Pig Brain. European Journal of Neuroscience, 1996, 8, 1350-1357.	2.6	16
39	Epileptiform activity in the piriform cortex of the in vitro isolated guinea pig brain preparation. Epilepsy Research, 1996, 26, 75-80.	1.6	10
40	Associative Synaptic Potentials in the Piriform Cortex of the Isolated Guinea-pig Brain In Vitro. European Journal of Neuroscience, 1995, 7, 54-64.	2.6	36