List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1210076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrophilic Cu ₉ S ₅ Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells <i>in Vivo</i> . ACS Nano, 2011, 5, 9761-9771.	7.3	1,155
2	Hydrophilic Flowerâ€Like CuS Superstructures as an Efficient 980 nm Laserâ€Driven Photothermal Agent for Ablation of Cancer Cells. Advanced Materials, 2011, 23, 3542-3547.	11.1	760
3	Sub-10 nm Fe ₃ O ₄ @Cu _{2–<i>x</i>} S Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy. Journal of the American Chemical Society, 2013, 135, 8571-8577.	6.6	581
4	lron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 2014, 35, 7470-7478.	5.7	264
5	Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials, 2011, 32, 4584-4593.	5.7	256
6	Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials, 2010, 31, 3667-3673.	5.7	234
7	In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochimica Acta, 2010, 55, 3734-3740.	2.6	217
8	Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomaterialia, 2011, 7, 3496-3504.	4.1	209
9	Silica oated Manganese Oxide Nanoparticles as a Platform for Targeted Magnetic Resonance and Fluorescence Imaging of Cancer Cells. Advanced Functional Materials, 2010, 20, 1733-1741.	7.8	197
10	Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35, 5369-5380.	5.7	162
11	Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Scientific Reports, 2014, 4, 3653.	1.6	160
12	Recent advances in enhanced chemodynamic therapy strategies. Nano Today, 2021, 39, 101162.	6.2	159
13	An Optical/Photoacoustic Dual-Modality Probe: Ratiometric in/ex Vivo Imaging for Stimulated H ₂ S Upregulation in Mice. Journal of the American Chemical Society, 2019, 141, 17973-17977.	6.6	156
14	The Inâ€Situ Sulfidation of Cu ₂ O by Endogenous H ₂ S for Colon Cancer Theranostics. Angewandte Chemie - International Edition, 2018, 57, 15782-15786.	7.2	151
15	Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials, 2015, 42, 66-77.	5.7	140
16	Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light. Chemical Communications, 2016, 52, 148-151.	2.2	140
17	Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon, 2014, 69, 379-389.	5.4	131
18	Multifunctional Polypyrrole@Fe ₃ O ₄ Nanoparticles for Dualâ€Modal Imaging and In Vivo Photothermal Cancer Therapy. Small, 2014, 10, 1063-1068.	5.2	126

#	Article	IF	CITATIONS
19	Fucoidan Extracted from Undaria pinnatifida: Source for Nutraceuticals/Functional Foods. Marine Drugs, 2018, 16, 321.	2.2	116
20	Ultrasmall WO _{3–<i>x</i>} @γ-poly- <scp>l</scp> -glutamic Acid Nanoparticles as a Photoacoustic Imaging and Effective Photothermal-Enhanced Chemodynamic Therapy Agent for Cancer. ACS Applied Materials & Interfaces, 2018, 10, 38833-38844.	4.0	110
21	A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy. Biomaterials, 2020, 251, 120079.	5.7	106
22	The behavior after intravenous injection in mice of multiwalled carbon nanotube / Fe3O4 hybrid MRI contrast agents. Biomaterials, 2011, 32, 4867-4876.	5.7	103
23	Self-Assembly of Giant Mo ₂₄₀ Hollow Opening Dodecahedra. Journal of the American Chemical Society, 2020, 142, 13982-13988.	6.6	102
24	Cu-Catalyzed Direct Amidation of Aromatic C–H Bonds: An Access to Arylamines. Journal of Organic Chemistry, 2014, 79, 4414-4422.	1.7	96
25	Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy. Chemical Communications, 2017, 53, 3253-3256.	2.2	90
26	Tumor pHâ€Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. Small, 2019, 15, e1902926.	5.2	88
27	Ellagic acid-Fe@BSA nanoparticles for endogenous H ₂ S accelerated Fe(III)/Fe(II) conversion and photothermal synergistically enhanced chemodynamic therapy. Theranostics, 2020, 10, 4101-4115.	4.6	85
28	Aptamer-conjugated Mn3O4@SiO2 core–shell nanoprobes for targeted magnetic resonance imaging. Nanoscale, 2013, 5, 10447.	2.8	79
29	Functionalized Holmiumâ€Doped Hollow Silica Nanospheres for Combined Sonodynamic and Hypoxiaâ€Activated Therapy. Advanced Functional Materials, 2019, 29, 1805764.	7.8	79
30	Biocompatiable hollow silica microspheres as novel ultrasound contrast agents for in vivo imaging. Journal of Materials Chemistry, 2011, 21, 6576.	6.7	76
31	Mn–Porphyrin-Based Metal–Organic Framework with High Longitudinal Relaxivity for Magnetic Resonance Imaging Guidance and Oxygen Self-Supplementing Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 41946-41956.	4.0	75
32	Small Gold Nanorods: Recent Advances in Synthesis, Biological Imaging, and Cancer Therapy. Materials, 2017, 10, 1372.	1.3	74
33	Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Materials Letters, 2005, 59, 1422-1425.	1.3	71
34	Paramagnetic hollow silica nanospheres for inÂvivo targeted ultrasound and magnetic resonance imaging. Biomaterials, 2014, 35, 5381-5392.	5.7	71
35	Macrophages-Mediated Delivery of Small Cold Nanorods for Tumor Hypoxia Photoacoustic Imaging and Enhanced Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 15251-15261.	4.0	71
36	RGD onjugated Nanoscale Coordination Polymers for Targeted T ₁ ―and T ₂ â€weighted Magnetic Resonance Imaging of Tumors in Vivo. Advanced Functional Materials, 2014, 24, 1738-1747.	7.8	69

#	Article	IF	CITATIONS
37	A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. Chemical Engineering Journal, 2020, 385, 123925.	6.6	69
38	Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Materials Research Bulletin, 2007, 42, 1611-1618.	2.7	67
39	Fe ₃ O ₄ –ZIF-8 assemblies as pH and glutathione responsive <i>T</i> ₂ – <i>T</i> ₁ switching magnetic resonance imaging contrast agent for sensitive tumor imaging <i>in vivo</i> . Chemical Communications, 2019, 55, 478-481.	2.2	66
40	Single chemosensor for multiple analytes: chromogenic and fluorogenic detection for fluoride anions and copper ions. Tetrahedron Letters, 2012, 53, 2026-2029.	0.7	65
41	Surface Plasmon Resonance–Enhanced Photoacoustic Imaging and Photothermal Therapy of Endogenous H ₂ Sâ€īriggered Au@Cu ₂ O. Small, 2019, 15, e1903473.	5.2	65
42	Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon, 2016, 107, 87-99.	5.4	62
43	A Ruthenium Nitrosyl-Functionalized Magnetic Nanoplatform with Near-Infrared Light-Controlled Nitric Oxide Delivery and Photothermal Effect for Enhanced Antitumor and Antibacterial Therapy. ACS Applied Materials & Interfaces, 2020, 12, 312-321.	4.0	61
44	Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. Journal of Materials Chemistry B, 2020, 8, 4738-4747.	2.9	61
45	A smart theranostic platform for photoacoustic and magnetic resonance dual-imaging-guided photothermal-enhanced chemodynamic therapy. Nanoscale, 2020, 12, 5139-5150.	2.8	60
46	MR/SPECT Imaging Guided Photothermal Therapy of Tumor-Targeting Fe@Fe ₃ O ₄ Nanoparticles <i>in Vivo</i> with Low Mononuclear Phagocyte Uptake. ACS Applied Materials & Interfaces, 2016, 8, 19872-19882.	4.0	59
47	Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control, 2017, 71, 110-116.	2.8	57
48	Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors. Bioconjugate Chemistry, 2017, 28, 869-879.	1.8	55
49	Functionalized Cu ₃ BiS ₃ nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale, 2018, 10, 4452-4462.	2.8	55
50	BSA-assisted synthesis of ultrasmall gallic acid–Fe(III) coordination polymer nanoparticles for cancer theranostics. International Journal of Nanomedicine, 2017, Volume 12, 7207-7223.	3.3	54
51	Influence of the counter ions and ligands on structures of silver(I) helicates with di-Schiff bases containing imidazole groups. Dalton Transactions RSC, 2000, , 2337-2344.	2.3	53
52	Photo-controlled targeted intracellular delivery of both nitric oxide and singlet oxygen using a fluorescence-trackable ruthenium nitrosyl functional nanoplatform. Chemical Communications, 2015, 51, 2555-2558.	2.2	53
53	Photostable Iridium(III)–Cyanine Complex Nanoparticles for Photoacoustic Imaging Guided Near-Infrared Photodynamic Therapy in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 15417-15425.	4.0	53
54	pH and Glutathione Synergistically Triggered Release and Self-Assembly of Au Nanospheres for Tumor Theranostics. ACS Applied Materials & Interfaces, 2020, 12, 8050-8061.	4.0	53

#	Article	IF	CITATIONS
55	Core–Shell–Shell NaYbF ₄ :Tm@CaF ₂ @NaDyF ₄ Nanocomposites for Upconversion/T ₂ -Weighted MRI/Computed Tomography Lymphatic Imaging. ACS Applied Materials & Interfaces, 2016, 8, 19208-19216.	4.0	52
56	Photoacousticâ€Enabled Selfâ€Guidance in Magneticâ€Hyperthermia Fe@Fe ₃ O ₄ Nanoparticles for Theranostics In Vivo. Advanced Healthcare Materials, 2018, 7, e1701201.	3.9	52
57	Graphene oxide / BaHoF5 / PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. Carbon, 2020, 158, 372-385.	5.4	52
58	Hydrophilic Cu ₃ BiS ₃ Nanoparticles for Computed Tomography Imaging and Photothermal Therapy. Particle and Particle Systems Characterization, 2015, 32, 668-679.	1.2	51
59	Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery. Journal of Biomaterials Applications, 2016, 30, 810-822.	1.2	51
60	One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro. Journal of Magnetism and Magnetic Materials, 2010, 322, 973-977.	1.0	50
61	Synthesis of Y2Si2O7:Eu nanocrystal and its optical properties. Journal of Luminescence, 2007, 124, 241-244.	1.5	49
62	Facile synthesis of amino-functionalized hollow silica microspheres and their potential application for ultrasound imaging. Journal of Colloid and Interface Science, 2011, 358, 392-398.	5.0	49
63	Hydrophilic graphene oxide/bismuth selenide nanocomposites for CT imaging, photoacoustic imaging, and photothermal therapy. Journal of Materials Chemistry B, 2017, 5, 1846-1855.	2.9	49
64	A multifunctional nanoplatform for lysosome targeted delivery of nitric oxide and photothermal therapy under 808 nm near-infrared light. Journal of Materials Chemistry B, 2016, 4, 4667-4674.	2.9	48
65	Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 2017, 7, 37887-37897.	1.7	47
66	Paclitaxel-Induced Ultrasmall Gallic Acid-Fe@BSA Self-Assembly with Enhanced MRI Performance and Tumor Accumulation for Cancer Theranostics. ACS Applied Materials & Interfaces, 2018, 10, 28483-28493.	4.0	46
67	Functionalized g-C3N4 nanosheets for potential use in magnetic resonance imaging-guided sonodynamic and nitric oxide combination therapy. Acta Biomaterialia, 2021, 121, 592-604.	4.1	46
68	Three transition metal complexes formed with tripodal polyimidazole ligands: synthesis, crystal structures and reactivity toward superoxide. Polyhedron, 2001, 20, 223-229.	1.0	44
69	Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10(PO4)6(OH)2 by hydrothermal method. Materials Chemistry and Physics, 2006, 99, 164-169.	2.0	43
70	Two in One: Luminescence Imaging and 730 nm Continuous Wave Laser Driven Photodynamic Therapy of Iridium Complexes. Organometallics, 2015, 34, 73-77.	1.1	43
71	Remodeling endogenous H2S microenvironment in colon cancer to enhance chemodynamic therapy. Chemical Engineering Journal, 2021, 422, 130098.	6.6	43
72	Synthesis and luminescent properties of SrZnO2:Eu3+,M+ (M=Li, Na, K) phosphor. Materials Research Bulletin, 2006, 41, 1578-1583.	2.7	41

#	Article	IF	CITATIONS
73	Polymeric and tetranuclear silver(I) chains encapsulated by a scorpion-like ligand. Synthesis and structures of [Ag2(tren(mim)3)]n(NO3)2n·nH2O and [Ag4(tren(mim)3)2](CF3SO3)4·2H2O (tren(mim)3=tris{2-[2-(1-methyl)imidazolyl]methyliminoethyl}amine). Polyhedron, 2000, 19, 2237-2242.	1.0	40
74	A ruthenium-nitrosyl-functionalized nanoplatform for the targeting of liver cancer cells and NIR-light-controlled delivery of nitric oxide combined with photothermal therapy. Journal of Materials Chemistry B, 2017, 5, 7831-7838.	2.9	40
75	Preparation and luminescence properties of LED conversion novel phosphors SrZnO2:Sm. Materials Letters, 2008, 62, 907-910.	1.3	39
76	Monodisperse water-soluble Fe–Ni nanoparticles for magnetic resonance imaging. Journal of Alloys and Compounds, 2011, 509, 1217-1221.	2.8	38
77	Copperâ€Catalyzed Cyanomethylation of Substituted Tetrahydroisoquinolines with Acetonitrile. Advanced Synthesis and Catalysis, 2016, 358, 2392-2397.	2.1	38
78	A d-f heteronuclear complex for dual-mode phosphorescence and magnetic resonance imaging. Biomaterials, 2012, 33, 8591-8599.	5.7	36
79	Dual-channel fluorescence "turn on―probe for Cu2+. Sensors and Actuators B: Chemical, 2012, 173, 811-816.	4.0	36
80	<p>Smart nanomedicine agents for cancer, triggered by pH, glutathione, H₂O₂, or H₂S</p> . International Journal of Nanomedicine, 2019, Volume 14, 5729-5749.	3.3	36
81	(â^')-Menthol based thixotropic hydrogel and its application as a universal antibacterial carrier. Soft Matter, 2014, 10, 3077.	1.2	35
82	Preparation and Imaging Investigation of Dual-targeted C3F8-filled PLGA Nanobubbles as a Novel Ultrasound Contrast Agent for Breast Cancer. Scientific Reports, 2018, 8, 3887.	1.6	35
83	pH-responsive magnetic mesoporous silica nanospheres for magnetic resonance imaging and drug delivery. Reactive and Functional Polymers, 2012, 72, 329-336.	2.0	34
84	A magnetic resonance imaging nanosensor for Hg (II) based on thymidine-functionalized supermagnetic iron oxide nanoparticles. Sensors and Actuators B: Chemical, 2012, 161, 429-433.	4.0	34
85	NIR-II laser-mediated photo-Fenton-like reaction via plasmonic Cu9S8 for immunotherapy enhancement. Nano Today, 2022, 43, 101397.	6.2	33
86	Morphology-controlled hydrothermal synthesis of MnCO3 hierarchical superstructures with Schiff base as stabilizer. Materials Research Bulletin, 2011, 46, 1908-1915.	2.7	32
87	Enhanced decoloration efficacy of electrospun polymer nanofibers immobilized with Fe/Ni bimetallic nanoparticles. RSC Advances, 2013, 3, 6455.	1.7	32
88	High-efficacy antibacterial polymeric micro/nano particles with N-halamine functional groups. Chemical Engineering Journal, 2014, 254, 30-38.	6.6	32
89	Targeted delivery of photoactive diazido Pt ^{IV} complexes conjugated with fluorescent carbon dots. New Journal of Chemistry, 2015, 39, 800-804.	1.4	32
90	Ruthenium nitrosyl grafted carbon dots as a fluorescence-trackable nanoplatform for visible light-controlled nitric oxide release and targeted intracellular delivery. Journal of Inorganic Biochemistry, 2016, 165, 152-158.	1.5	32

#	Article	IF	CITATIONS
91	Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control, 2013, 34, 436-443.	2.8	31
92	Coating multi-walled carbon nanotubes with rare-earth complexes by anin situsynthetic method. Nanotechnology, 2008, 19, 345701.	1.3	30
93	A selective phosphorescent chemodosimeter for mercury ion. Inorganica Chimica Acta, 2010, 363, 1755-1759.	1.2	30
94	Synthesis of d–f coordination polymer nanoparticles and their application in phosphorescence and magnetic resonance imaging. Dalton Transactions, 2011, 40, 11941.	1.6	30
95	CoFe ₂ O ₄ @MnFe ₂ O ₄ /polypyrrole nanocomposites for in vitro photothermal/magnetothermal combined therapy. RSC Advances, 2015, 5, 7349-7355.	1.7	30
96	Graphene oxide / MnWO4 nanocomposite for magnetic resonance / photoacoustic dual-model imaging and tumor photothermo-chemotherapy. Carbon, 2018, 138, 397-409.	5.4	29
97	Ultrasmall Fe@Fe3O4 nanoparticles as T1–T2 dual-mode MRI contrast agents for targeted tumor imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102335.	1.7	29
98	Synthesis of water soluble PEG-functionalized iridium complex via click chemistry and application for cellular bioimaging. Inorganic Chemistry Communication, 2010, 13, 1387-1390.	1.8	28
99	Large-scale synthesis of monodisperse Prussian blue nanoparticles for cancer theranostics via an "in situ modification" strategy. International Journal of Nanomedicine, 2019, Volume 14, 271-288.	3.3	28
100	Highly Enantioselective Rhodium-Catalyzed Cross-Addition of Silylacetylenes to Cyclohexadienone-Tethered Internal Alkynes. Organic Letters, 2019, 21, 1690-1693.	2.4	27
101	Magnetic–Photoacoustic Dual-Mode Probe for the Visualization of H ₂ S in Colorectal Cancer. Analytical Chemistry, 2020, 92, 8254-8261.	3.2	26
102	Highly enhanced f–f transitions of Eu3+ in La2O3 phosphor via citric acid and poly (ethylene glycol) precursor route. Journal of Non-Crystalline Solids, 2007, 353, 4697-4701.	1.5	25
103	A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes. Inorganic Chemistry Communication, 2012, 16, 1-3.	1.8	25
104	Detection of melamine by a magnetic relaxation switch assay with functionalized Fe/Fe3O4 nanoparticles. Sensors and Actuators B: Chemical, 2014, 203, 477-482.	4.0	24
105	In depth analysis of apoptosis induced by silica coated manganese oxide nanoparticles in vitro. Journal of Hazardous Materials, 2015, 283, 519-528.	6.5	24
106	An integrated nanoplatform for theranostics via multifunctional core–shell ferrite nanocubes. Journal of Materials Chemistry B, 2016, 4, 1908-1914.	2.9	24
107	Tumor Microenvironment-Activated Nanoparticles Loaded with an Iron-Carbonyl Complex for Chemodynamic Immunotherapy of Lung Metastasis of Melanoma <i>In Vivo</i> . ACS Applied Materials & Interfaces, 2021, 13, 39100-39111.	4.0	24
108	The effect of an anionic starburst dendrimer on the crystallization of BaWO4 under hydrothermal reaction conditions. Journal of Crystal Growth, 2004, 267, 569-573.	0.7	23

#	Article	IF	CITATIONS
109	Preparation and magnetic properties of cobalt nanoparticles with dendrimers as templates. Materials Chemistry and Physics, 2010, 121, 342-348.	2.0	23
110	Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications. Materials Research Bulletin, 2014, 49, 285-290.	2.7	23
111	PEGylated nickel carbide nanocrystals as efficient near-infrared laser induced photothermal therapy for treatment of cancer cells in vivo. Nanoscale, 2014, 6, 12591-12600.	2.8	23
112	Folate conjugated Mn3O4@SiO2 nanoparticles for targeted magnetic resonance imaging in vivo. Materials Research Bulletin, 2014, 57, 97-102.	2.7	23
113	Gadolinium-labelled iron/iron oxide core/shell nanoparticles as <i>T</i> ₁ – <i>T</i> ₂ contrast agent for magnetic resonance imaging. RSC Advances, 2018, 8, 26764-26770.	1.7	23
114	Targeted and NIR light-controlled delivery of nitric oxide combined with a platinum(<scp>iv</scp>) prodrug for enhanced anticancer therapy. Journal of Materials Chemistry B, 2019, 7, 1867-1874.	2.9	23
115	Ultrasound-Enhanced Generation of Reactive Oxygen Species for MRI-Guided Tumor Therapy by the Fe@Fe ₃ O ₄ -Based Peroxidase-Mimicking Nanozyme. ACS Applied Bio Materials, 2020, 3, 639-647.	2.3	23
116	Regenerable antimicrobial N-halamine/silica hybrid nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	22
117	PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy. Chinese Chemical Letters, 2015, 26, 749-754.	4.8	22
118	Concentration effect on large scale synthesis of high quality small gold nanorods and their potential role in cancer theranostics. Materials Science and Engineering C, 2018, 87, 120-127.	3.8	22
119	T1-Weight Magnetic Resonance Imaging Performances of Iron Oxide Nanoparticles Modified with a Natural Protein Macromolecule and an Artificial Macromolecule. Nanomaterials, 2019, 9, 170.	1.9	22
120	A polyamidoamine dendrimer with peripheral 1,8-naphthalimide groups capable of acting as a PET fluorescent sensor for the rare earth cations. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 69-74.	2.0	21
121	Solvothermal synthesis and optical limiting properties of carbon nanotube-based hybrids containing ternary chalcogenides. Carbon, 2012, 50, 4847-4855.	5.4	21
122	Chiral porous metal–organic frameworks containing μ-oxo-bis[Ti(salan)] units for asymmetric cyanation of aldehydes. Dalton Transactions, 2015, 44, 12999-13002.	1.6	21
123	Fucoidan Extracted From Sporophyll of Undaria pinnatifida Grown in Weihai, China – Chemical Composition and Comparison of Antioxidant Activity of Different Molecular Weight Fractions. Frontiers in Nutrition, 2021, 8, 636930.	1.6	21
124	Preparation and characterization of copper metal nanoparticles using dendrimers as protectively colloids. Materials Chemistry and Physics, 2008, 112, 977-983.	2.0	20
125	Synthesis, characterization and in vitro and in vivo investigation of C3F8-filled poly(lactic-co-glycolic) Tj ETQq1	1 0.784314	4 rgBT /Over
126	A facile synthesis and photoluminescence of porous S-doped ZnO architectures. Journal of Alloys and Compounds, 2008, 459, 395-398.	2.8	19

SHI-PING YANG

#	Article	IF	CITATIONS
127	A bifunctional sensor based on Au-Fe3O4 nanoparticle for the detection of Cd2+. Sensors and Actuators B: Chemical, 2015, 220, 622-626.	4.0	19
128	A highly selective magnetic sensor with functionalized Fe/Fe 3 O 4 nanoparticles for detection of Pb 2+. Chinese Chemical Letters, 2016, 27, 891-895.	4.8	19
129	Visualization of size-dependent tumour retention of PEGylated nanographene oxide via SPECT imaging. Journal of Materials Chemistry B, 2016, 4, 6446-6453.	2.9	19
130	A smart off–on copper sulfide photoacoustic imaging agent based on amorphous–crystalline transition for cancer imaging. Chemical Communications, 2018, 54, 10962-10965.	2.2	19
131	Ultrasensitive iron-based magnetic resonance contrast agent constructed with natural polyphenol tannic acid for tumor theranostics. Science China Materials, 2021, 64, 498-509.	3.5	19
132	A porphyrin-based metallacage for enhanced photodynamic therapy. Nanoscale, 2022, 14, 6373-6383.	2.8	19
133	Synthesis, crystal structures and properties of copper(II) complexes of Schiff base derivatives containing imidazole and β-alanine groups. Journal of the Chemical Society Dalton Transactions, 1999, , 1999-2004.	1.1	18
134	Water-soluble magnetic CoO nanocrystals functionalized with surfactants as T2-weighed MRI contrast agents in vitro. Dalton Transactions, 2011, 40, 3616.	1.6	18
135	Surfactant-controlled morphology and magnetic property of manganese ferrite nanocrystal contrast agent. Nanotechnology, 2011, 22, 085707.	1.3	18
136	Iridium complex loaded polypyrrole nanoparticles for NIR laser induced photothermal effect and generation of singlet oxygen. RSC Advances, 2016, 6, 15509-15512.	1.7	18
137	Waterâ€Soluble Polymer Nanoparticles Constructed by Threeâ€Component Selfâ€Assembly: An Efficient Theranostic Agent for Phosphorescent Imaging and Photodynamic Therapy. Chemistry - A European Journal, 2017, 23, 3728-3734.	1.7	18
138	Heteropoly blue doped polymer nanoparticles: an efficient theranostic agent for targeted photoacoustic imaging and near-infrared photothermal therapy in vivo. Journal of Materials Chemistry B, 2017, 5, 382-387.	2.9	18
139	Macromolecules with Different Charges, Lengths, and Coordination Groups for the Coprecipitation Synthesis of Magnetic Iron Oxide Nanoparticles as T1 MRI Contrast Agents. Nanomaterials, 2019, 9, 699.	1.9	18
140	Nanozyme-Augmented Tumor Catalytic Therapy by Self-Supplied H2O2 Generation. ACS Applied Bio Materials, 2020, 3, 1769-1778.	2.3	18
141	The fluorescence of polyamidoamine dendrimers peripherally modified with 1,8-naphthalimide groups: Effect of the rare earth ions and protons. Journal of Luminescence, 2007, 126, 515-530.	1.5	17
142	Synthesis and photoluminescence of Cl-doped ZnO nanospheres. Optical Materials, 2008, 31, 1-5.	1.7	17
143	Syntheses, crystal structures and magnetic properties of three novel cobalt(ii) complexes containing imidazole derivative groups. Dalton Transactions, 2009, , 2540.	1.6	17
144	Functionalized Au-Fe3O4 nanocomposites as a magnetic and colorimetric bimodal sensor for melamine. Sensors and Actuators B: Chemical, 2016, 226, 512-517.	4.0	17

#	Article	IF	CITATIONS
145	Synthesis and applications of fluorescent-magnetic-bifunctional dansylated Fe3O4@SiO2 nanoparticles. Journal of Materials Science, 2011, 46, 5959-5968.	1.7	16
146	A peptide probe for the detection of neurokinin-1 receptor by disaggregation enhanced fluorescence and magnetic resonance signals. Scientific Reports, 2014, 4, 6487.	1.6	16
147	Chelator-Free Conjugation of ^{99m} Tc and Gd ³⁺ to PEGylated Nanographene Oxide for Dual-Modality SPECT/MR Imaging of Lymph Nodes. ACS Applied Materials & Interfaces, 2017, 9, 42612-42621.	4.0	15
148	Mitochondria-targeted carbon monoxide delivery combined with singlet oxygen production from a single nanoplatform under 808 nm light irradiation for synergistic anticancer therapy. Journal of Materials Chemistry B, 2021, 9, 4241-4248.	2.9	15
149	Grafting of Gd-DTPA onto MOF-808 to enhance MRI performance for guiding photothermal therapy. Journal of Materials Chemistry B, 2021, 9, 8631-8638.	2.9	15
150	Phosphorescent Polymeric Nanoparticles by Coordination Cross‣inking as a Platform for Luminescence Imaging and Photodynamic Therapy. Chemistry - A European Journal, 2014, 20, 16242-16247.	1.7	14
151	A highly selective magnetic sensor for Cd2+ in living cells with (Zn, Mn)-doped iron oxide nanoparticles. Sensors and Actuators B: Chemical, 2015, 207, 887-892.	4.0	14
152	Phosphorescent Coordination Polymer Nanoparticles as a Three-in-One Platform for Optical Imaging, T ₁ -Weighted Magnetic Resonance Imaging, and Photodynamic Therapy. Journal of Physical Chemistry C, 2015, 119, 573-579.	1.5	14
153	Hollow Bimetallic Complex Nanoparticles for Trimodality Imaging and Photodynamic Therapy In Vivo. ACS Applied Materials & Interfaces, 2020, 12, 37470-37476.	4.0	14
154	Renal-clearable zwitterionic conjugated hollow ultrasmall Fe ₃ O ₄ nanoparticles for <i>T</i> ₁ -weighted MR imaging <i>in vivo</i> . Journal of Materials Chemistry B, 2020, 8, 3087-3091.	2.9	14
155	Synthesis and optical properties of halogen-doped ZnO phosphor. Materials Letters, 2008, 62, 3018-3020.	1.3	13
156	Immobilization of trypsin on water-soluble dendrimer-modified carbon nanotubes for on-plate proteolysis combined with MALDI-MS analysis. Molecular BioSystems, 2010, 6, 1447.	2.9	13
157	A photoacoustic Zn2+ sensor based on a merocyanine/xanthene-6-ol hybrid chromophore and its ratiometric imaging in mice. Inorganic Chemistry Frontiers, 0, , .	3.0	13
158	Metal sulfide coated multiwalled carbon nanotubes synthesized by anin situmethod and their optical limiting properties. Nanotechnology, 2009, 20, 195604.	1.3	12
159	Gd(<scp>iii</scp>) complex conjugated ultra-small iron oxide as an enhanced T ₁ -weighted MR imaging contrast agent. Journal of Materials Chemistry B, 2015, 3, 1433-1438.	2.9	12
160	Low field nuclear magnetic sensing technology based on hydrogel-coated superparamagnetic particles. Analytica Chimica Acta, 2020, 1094, 151-159.	2.6	12
161	Fe ₃ O ₄ assembly for tumor accurate diagnosis by endogenous GSH responsive <i>T</i> ₂ / <i>T</i> ₁ magnetic relaxation conversion. Journal of Materials Chemistry B, 2021, 9, 7734-7740.	2.9	12
162	Preparation and characterization of silver nanoparticles with dendrimers as templates. Journal of Applied Polymer Science, 2008, 108, 4023-4028.	1.3	11

#	Article	IF	CITATIONS
163	Preparation of amino-functionalized magnetite nanoclusters by ring-opening polymerization and application for targeted magnetic resonance imaging. Journal of Materials Science, 2013, 48, 7686-7695.	1.7	11
164	Tumor Microenvironment-Responsive Reagent DFS@HKUST-1 for Photoacoustic Imaging-Guided Multimethod Therapy. ACS Applied Bio Materials, 2021, 4, 5753-5764.	2.3	11
165	Gadolinium-doped hollow silica nanospheres loaded with curcumin for magnetic resonance imaging-guided synergistic cancer sonodynamic-chemotherapy. Materials Science and Engineering C, 2021, 126, 112157.	3.8	11
166	A class of water-soluble Fe(<scp>iii</scp>) coordination complexes as <i>T</i> ₁ -weighted MRI contrast agents. Journal of Materials Chemistry B, 2021, 9, 1787-1791.	2.9	11
167	Crystallographic report: Tris{2-[2-(1-methyl)imidazolyl]methyliminoethyl}aminezinc(II) dihexafluorophosphate. Applied Organometallic Chemistry, 2004, 18, 88-88.	1.7	10
168	Syntheses, Structure and Photoluminescence Properties of Silver(I) Complexes with Naphthalene Iminoimides. European Journal of Inorganic Chemistry, 2009, 2009, 2817-2824.	1.0	10
169	General Protocol for the Synthesis of Functionalized Magnetic Nanoparticles for Magnetic Resonance Imaging from Protected Metal–Organic Precursors. Chemistry - A European Journal, 2014, 20, 7160-7167.	1.7	10
170	RGD-conjugated titanium dioxide nanoparticles: targeted near-infrared photothermal therapy for αvβ3 integrin overexpressed cancer cells. Journal of Materials Science, 2017, 52, 13356-13364.	1.7	10
171	White-light phosphorescence from binary coordination polymer nanoparticles. Materials Chemistry and Physics, 2013, 139, 345-349.	2.0	9
172	Preparation of pH-responsive hollow poly(MAA-co-EGDMA) nanocapsules for drug delivery and ultrasound imaging. RSC Advances, 2016, 6, 103754-103762.	1.7	9
173	Coordination polymer hybridized Au nanocages: a nanoplatform for dual-modality imaging guided near-infrared driven photothermal therapy <i>in vivo</i> . Journal of Materials Chemistry B, 2017, 5, 8761-8769.	2.9	9
174	Amplifying Apoptosis Homing Nanoplatform for Tumor Theranostics. Advanced Healthcare Materials, 2018, 7, e1800296.	3.9	9
175	Selfâ€Amplified Apoptosis Targeting Nanoplatform for Synergistic Magnetic–Thermal/Chemo Therapy In Vivo. Advanced Healthcare Materials, 2020, 9, 2000202.	3.9	9
176	Modulating hypoxia inducible factorâ€1 by nanomaterials for effective cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1766.	3.3	9
177	Preparation of nanocrystalline ceramic oxide powders in the presence of anionic starburst dendrimer. Materials Letters, 2004, 58, 3285-3289.	1.3	8
178	Cytotoxicity of mitochondrial-targeting silica-coated manganese oxide nanoparticles. Science China Chemistry, 2015, 58, 1537-1543.	4.2	8
179	Solvothermal synthesis of carbon nanotube-AgBiS2 hybrids and their optical limiting properties. Applied Surface Science, 2016, 366, 30-37.	3.1	8
180	The Inâ€Situ Sulfidation of Cu ₂ O by Endogenous H ₂ S for Colon Cancer Theranostics. Angewandte Chemie, 2018, 130, 16008-16012.	1.6	7

#	Article	IF	CITATIONS
181	Fe@Fe ₃ Ge ₂ nanoparticles for MR imaging-guided NIR-driven photodynamic therapy <i>in vivo</i> . Journal of Materials Chemistry B, 2019, 7, 5661-5668.	2.9	7
182	Iridium complex nanoparticle mediated radiopharmaceutical-excited phosphorescence imaging. Chemical Communications, 2019, 55, 14442-14445.	2.2	7
183	Ir–Ho bimetallic complex-mediated low-dose radiotherapy/radiodynamic therapy <i>in vivo</i> . Chemical Communications, 2020, 56, 6193-6196.	2.2	7
184	Engineering of an endogenous hydrogen sulfide responsive smart agent for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon cancer. Journal of Advanced Research, 2022, 41, 159-168.	4.4	7
185	Noncovalent Interactions of Metalloporphyrins with Polyamidoamine Dendrimers Give Rise to Efficient Catalytic Systems for H ₂ O ₂ Oxidation of Trichlorophenol in Water. ChemSusChem, 2011, 4, 1063-1067.	3.6	6
186	Glutathione-Responsive Chemodynamic Therapy of Manganese(III/IV) Cluster Nanoparticles Enhanced by Electrochemical Stimulation via Oxidative Stress Pathway. Bioconjugate Chemistry, 2022, 33, 152-163.	1.8	6
187	A multifunctional nanoplatform delivering carbon monoxide and a cysteine protease inhibitor to mitochondria under NIR light shows enhanced synergistic anticancer efficacy. Nanoscale, 2022, 14, 9097-9103.	2.8	6
188	Synthesis, crystal structure, and application as a Ag+ chemodosimeter of phosphorescent iridium complexes. Journal of Coordination Chemistry, 2014, 67, 1353-1360.	0.8	5
189	Solvothermal synthesis and characterization of carbon nanotube–CuInS2 hybrids. Diamond and Related Materials, 2015, 59, 13-20.	1.8	5
190	Facile one-step dialysis strategy for fabrication of hollow complex nanoparticles. Chemical Communications, 2019, 55, 9120-9123.	2.2	5
191	Carbon-nanotube-supported Ag and Cu2O nanoparticles: Dendrimer-mediated synthesis and their broadband optical limiting properties. Materials Chemistry and Physics, 2012, 134, 183-189.	2.0	4
192	Guest induced morphological transformation from nanospheres to nanowires by hydrogen bond self-assembly. Dalton Transactions, 2013, 42, 4790.	1.6	4
193	Visible light-controlled carbon monoxide delivery combined with the inhibitory activity of histone deacetylases from a manganese complex for an enhanced antitumor therapy. Journal of Inorganic Biochemistry, 2021, 216, 111354.	1.5	4
194	NIR light-controlled mitochondria-targeted delivery of carbon monoxide combined with histone deacetylase inhibition for synergistic anticancer therapy. Journal of Inorganic Biochemistry, 2022, 226, 111656.	1.5	4
195	Morphological control and photoluminescence of ZnS:Mn microstructure. Journal of Materials Research, 2007, 22, 1207-1213.	1.2	3
196	A facile synthesis and optical properties of ZnO:S,Cl apertured architectures. Materials Letters, 2008, 62, 1187-1189.	1.3	3
197	Syntheses, Crystal Structures, and Properties of Two Novel Trinuclear Copper Complexes Constructed by a Tripodal Heptadentate Ligand Containing Three Imidazolate Groups. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 2340-2346.	0.6	3
198	Morphology conversion and highly enhanced green emission of ZnO phosphors by annealing of ZnS in KCl flux. Journal of Alloys and Compounds, 2009, 470, 536-538.	2.8	3

#	Article	IF	CITATIONS
199	Structure regulation of Nickel (II) complexes with imidazole–tripodal ligand by altering the counter anions and the reaction conditions. Inorganic Chemistry Communication, 2013, 38, 139-142.	1.8	3
200	ZnDPA-conjugated cyanine probes for targeted near-infrared fluorescence and photoacoustic imaging of drug-induced liver injury in vivo. Dyes and Pigments, 2021, 194, 109586.	2.0	3
201	Zeolitic imidazolate framework nanoparticles loaded with gadolinium chelate as efficient T1 MRI contrast agent. Journal of Materials Science, 2021, 56, 7386-7396.	1.7	3
202	A flexible copper sulfide composite membrane with tunable plasmonic resonance absorption for near-infrared light-driven seawater desalination. Environmental Science Advances, 2022, 1, 110-120.	1.0	3
203	Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules, 2022, 27, 4573.	1.7	3
204	Self-assembly, electrochemistry and magnetic behaviors of cobalt complexes with featuring imidazole–tripodal ligand. Inorganic Chemistry Communication, 2014, 40, 211-214.	1.8	2
205	H2O2-responsive release of Fe3+ and NO: Anti-tumor therapy of Roussin's black salt. Inorganic Chemistry Communication, 2021, 130, 108740.	1.8	2
206	[2-(2-Carboxyphenyl)benzoato]bis(1,10-phenanthroline)zinc(II) 2-(2-carboxyphenyl)benzoate monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m525-m526.	0.2	2
207	Targeted carbon monoxide delivery combined with chemodynamic, chemotherapeutic and photothermal therapies for enhanced antitumor efficacy. New Journal of Chemistry, 2022, 46, 8413-8421.	1.4	2
208	Bis{μ-N-[(1-methylimidazol-2-yl)methyl]-β-alanine}bis[dichlorozinc(II)] dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m465-m467.	0.2	1
209	{N,N-Bis[(1-methylimidazole-2-yl)methyl]formamide}dichlorozinc(II). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m3144-m3145.	0.2	1
210	Triethylaminium–trimesate–trimesic acid–water (1/1/1/2). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3053-o3053.	0.2	1
211	Chiral 3,3′-disubstituted BINOL derivatives: Syntheses, characterizations and X-ray structure analyses. Journal of Molecular Structure, 2008, 875, 50-57.	1.8	1
212	Amplified Photoacoustic Imaging of Tumor through In Situ Cycloaddition. Particle and Particle Systems Characterization, 2019, 36, 1900042.	1.2	1
213	Folate-conjugated Mn ₃ O ₄ @SiO <sub core-shell nanoparticles for targeted magnetic resonance imaging. Scientia Sinica Chimica, 2014, 44, 639-645.</sub 	>2	2
214	Tetra-μ-acetato-bis[(9,10-dihydrobenzo[de]imidazo[2,1-a]isoquinolin-7-one-κN11)copper(II)]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2573-m2574.	0.2	0
215	Second-sphere coordination-induced morphology transformation from phosphorescent nanowires to microcubes. Dalton Transactions, 2015, 44, 2970-2972.	1.6	0