
David C H Wallom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1210017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attributing human mortality during extreme heat waves to anthropogenic climate change. Environmental Research Letters, 2016, 11, 074006.	2.2	264
2	Human influence on climate in the 2014 southern England winter floods and their impacts. Nature Climate Change, 2016, 6, 627-634.	8.1	237
3	Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geoscientific Model Development, 2017, 10, 571-583.	1.3	203
4	The ocean sampling day consortium. GigaScience, 2015, 4, 27.	3.3	185
5	Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences, 2021, 21, 941-960.	1.5	171
6	Impacts of Raw Data Temporal Resolution Using Selected Clustering Methods on Residential Electricity Load Profiles. IEEE Transactions on Power Systems, 2015, 30, 3217-3224.	4.6	96
7	weather@home 2: validation of an improved global–regional climate modelling system. Geoscientific Model Development, 2017, 10, 1849-1872.	1.3	70
8	A large set of potential past, present and future hydro-meteorological time series for the UK. Hydrology and Earth System Sciences, 2018, 22, 611-634.	1.9	54
9	Clustering disaggregated load profiles using a Dirichlet process mixture model. Energy Conversion and Management, 2015, 92, 507-516.	4.4	52
10	Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives. Hydrology and Earth System Sciences, 2019, 23, 1409-1429.	1.9	46
11	Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a modeling study of the western US. Climate Dynamics, 2017, 48, 2191-2213.	1.7	44
12	Interoperation of worldâ€wide production eâ€Science infrastructures. Concurrency Computation Practice and Experience, 2009, 21, 961-990.	1.4	39
13	An Overlapping Zone-Based State Estimation Method for Distribution Systems. IEEE Transactions on Smart Grid, 2015, 6, 2126-2133.	6.2	36
14	Cloud computing in e-Science: research challenges andÂopportunities. Journal of Supercomputing, 2014, 70, 408-464.	2.4	34
15	myTrustedCloud: Trusted Cloud Infrastructure for Security-critical Computation and Data Managment. , 2011, , .		31
16	Assessing mid-latitude dynamics in extreme event attribution systems. Climate Dynamics, 2017, 48, 3889-3901.	1.7	29
17	Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	27
18	Attributing human influence on the July 2017 Chinese heatwave: the influence of sea-surface temperatures. Environmental Research Letters, 2018, 13, 114004.	2.2	23

DAVID C H WALLOM

#	Article	IF	CITATIONS
19	Anthropogenic Warming has Substantially Increased the Likelihood of July 2017–Like Heat Waves over Central Eastern China. Bulletin of the American Meteorological Society, 2019, 100, S91-S95.	1.7	21
20	Predicting winning and losing businesses when changing electricity tariffs. Applied Energy, 2014, 133, 298-307.	5.1	20
21	Resilient by design: Preventing wildfires and blackouts with microgrids. Applied Energy, 2022, 313, 118793.	5.1	20
22	Larger Spatial Footprint of Wintertime Total Precipitation Extremes in a Warmer Climate. Geophysical Research Letters, 2021, 48, e2020GL091990.	1.5	19
23	The weather@home regional climate modelling project for Australia and New Zealand. Geoscientific Model Development, 2016, 9, 3161-3176.	1.3	16
24	A pan-South-America assessment of avoided exposure to dangerous extreme precipitation by limiting to 1.5 ŰC warming. Environmental Research Letters, 2020, 15, 054005.	2.2	15
25	Climate model forecast biases assessed with a perturbed physics ensemble. Climate Dynamics, 2017, 49, 1729-1746.	1.7	12
26	Classification and characterization of intra-day load curves of PV and non-PV households using interpretable feature extraction and feature-based clustering. Sustainable Cities and Society, 2021, 75, 103380.	5.1	12
27	Shibboleth Access for Resources on the National Grid Service (SARoNGS). , 2009, , .		11
28	Recent developments towards novel high performance computing and communications solutions for smart distribution network operation. , 2011, , .		11
29	Power-use profile analysis of non-domestic consumers for electricity tariff switching. Energy Efficiency, 2016, 9, 825-841.	1.3	11
30	Parametric Sensitivity of Vegetation Dynamics in the TRIFFID Model and the Associated Uncertainty in Projected Climate Change Impacts on Western U.S. Forests. Journal of Advances in Modeling Earth Systems, 2019, 11, 2787-2813.	1.3	11
31	Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation. Geoscientific Model Development, 2019, 12, 3017-3043.	1.3	11
32	Enabling BOINC in infrastructure as a service cloud system. Geoscientific Model Development, 2017, 10, 811-826.	1.3	10
33	myTrustedCloud. , 2012, , .		9
34	ShibGrid: Shibboleth Access for the UK National Grid Service. , 2006, , .		7
35	A data-driven approach for electricity load profile prediction of new supermarkets. Energy Procedia, 2019, 161, 242-250.	1.8	7
36	Influence of the Ocean and Greenhouse Gases on Severe Drought Likelihood in the Central United States in 2012. Journal of Climate, 2017, 30, 1789-1806.	1.2	6

DAVID C H WALLOM

#	Article	IF	CITATIONS
37	Anthropogenic Contribution to the 2017 Earliest Summer Onset in South Korea. Bulletin of the American Meteorological Society, 2019, 100, S73-S77.	1.7	6
38	Cloud Computing for Climate Modelling: Evaluation, Challenges and Benefits. Computers, 2020, 9, 52.	2.1	6
39	Anthropogenic climate change contribution to wildfire-prone weather conditions in the Cerrado and Arc of deforestation. Environmental Research Letters, 2021, 16, 094051.	2.2	6
40	A hardware and software computational platform for the HiPerDNO (high performance distribution) Tj ETQq0 0 (0 rgBT /Ov	erlgck 10 Tf !
41	Towards an understanding of dynamic energy pricing and tariffs. , 2012, , .		5
42	A comparison of model ensembles for attributing 2012 West African rainfall. Environmental Research Letters, 2017, 12, 014019.	2.2	5
43	OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting. Geoscientific Model Development, 2021, 14, 3473-3486.	1.3	5
44	Ensemble of European regional climate simulations for the winter of 2013 and 2014 from HadAM3P-RM3P. Scientific Data, 2018, 5, 180057.	2.4	4
45	A multi-agent model for assessing electricity tariffs. , 2014, , .		3
46	The user support programme and the training infrastructure of the EGI Federated Cloud. , 2015, , .		3
47	Federating Infrastructure as a Service Cloud Computing Systems to Create a Uniform E-infrastructure for Research. , 2015, , .		3
48	On High Precipitation in Mozambique, Zimbabwe and Zambia in February 2018. Bulletin of the American Meteorological Society, 2020, 101, S47-S52.	1.7	3
49	Predicting electricity demand profiles of new supermarkets using machine learning. Energy and Buildings, 2021, 234, 110635.	3.1	3
50	Anomaly Detection for Industrial Big Data. , 2018, , .		3
51	A 1-Day Extreme Rainfall Event in Tasmania: Process Evaluation and Long Tail Attribution. Bulletin of the American Meteorological Society, 2020, 101, S123-S128.	1.7	3

52	Generating samples of extreme winters to support climate adaptation. Weather and Climate Extremes, 2022, 36, 100419.	1.6	3

53	Utilising Amazon web services to provide an on demand urgent computing facility for climateprediction.net. , 2016, , .		2
54	On the complexities of utilizing largeâ€scale lightpathâ€connected distributed cyberinfrastructure. Concurrency Computation Practice and Experience, 2017, 29, e3853.	1.4	2

4

DAVID C H WALLOM

#	Article	IF	CITATIONS
55	Understanding Climate Risk in Future Energy Systems: An Energy–Climate Data Hackathon. Bulletin of the American Meteorological Society, 2022, 103, E1321-E1329.	1.7	2
56	Adding Standards Based Job Submission to a Commodity Grid Broker. , 2008, , .		1
57	An Image Processing Portal and Web-Service for the Study of Ancient Documents. , 2009, , .		1
58	Adding Standards Based Job Submission to a Commodity Grid Broker. , 2010, , .		1
59	Flexible services for the support of research. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120067.	1.6	1
60	Can functional characteristics usefully define the cloud computing landscape and is the current reference model correct?. Journal of Cloud Computing: Advances, Systems and Applications, 2017, 6, .	2.1	1
61	Finding Ocean States That Are Consistent with Observations from a Perturbed Physics Parameter Ensemble. Journal of Climate, 2018, 31, 4639-4656.	1.2	1
62	Smart and agile local energy systems hold the key for broader net-zero energy transitions. , 2021, , .		1
63	A Framework for Sharing Heterogeneous Grid Resources in a Campus Environment. , 2010, , .		Ο
64	A genetic based Service Restoration Algorithm for real-time operated Medium Voltage Distribution Networks using High Performance Computing. , 2012, , .		0
65	Novel information model of smart consumers for real-time home energy management. , 2013, , .		0
66	Investigation of Data Communication Networks to Enable Demand Response and Dynamic Tariffs. , 2013, , \cdot		0
67	Public-Private Cloud Federation Challenges. , 2015, , .		0
68	Desktop as a Service Supporting Environmental 'omics. , 2015, , .		0
69	Editorial for Special Issue on Reproducible Research. , 2018, 77, 1-4.		Ο
70	The International Forest Risk Model (INFORM): A Method for Assessing Supply Chain Deforestation Risk with Imperfect Data. , 2019, , .		0
71	Using machine learning to orchestrate cloud resources in a RAN enabled edge environment. , 2019, , .		О
72	SIENA: Grid and Cloud Standards for e-Science and beyond. , 2012, , .		0