
Aleksandr Peet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12099666/publications.pdf Version: 2024-02-01

ALEKSANDD DEET

#	Article	IF	CITATIONS
1	The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes. Cell Host and Microbe, 2015, 17, 260-273.	5.1	1,008
2	Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell, 2016, 165, 842-853.	13.5	968
3	AIRE-Deficient Patients Harbor Unique High-Affinity Disease-Ameliorating Autoantibodies. Cell, 2016, 166, 582-595.	13.5	228
4	Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proceedings of the United States of America, 2017, 114, E6166-E6175.	3.3	227
5	Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes. PLoS ONE, 2015, 10, e0142976.	1.1	75
6	Th1/Th17 Plasticity Is a Marker of Advanced β Cell Autoimmunity and Impaired Glucose Tolerance in Humans. Journal of Immunology, 2015, 194, 68-75.	0.4	73
7	Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Proteins. Frontiers in Immunology, 2017, 8, 976.	2.2	48
8	Early Detection of Peripheral Blood Cell Signature in Children Developing β-Cell Autoimmunity at a Young Age. Diabetes, 2019, 68, 2024-2034.	0.3	37
9	Standard of hygiene and immune adaptation in newborn infants. Clinical Immunology, 2014, 155, 136-147.	1.4	35
10	Exploring the risk factors for differences in the cumulative incidence of coeliac disease in two neighboring countries: the prospective DIABIMMUNE study. Digestive and Liver Disease, 2016, 48, 1296-1301.	0.4	26
11	Birth weight in newborn infants with different diabetesâ€associated HLA genotypes in three neighbouring countries: Finland, Estonia and Russian Karelia. Diabetes/Metabolism Research and Reviews, 2012, 28, 455-461.	1.7	22
12	A retrospective analysis of the prevalence of imprinting disorders in Estonia from 1998 to 2016. European Journal of Human Genetics, 2019, 27, 1649-1658.	1.4	21
13	Coffin–Siris Syndrome with obesity, macrocephaly, hepatomegaly and hyperinsulinism caused by a mutation in the ARID1B gene. European Journal of Human Genetics, 2014, 22, 1327-1329.	1.4	18
14	Contrasting microbiotas between Finnish and Estonian infants: Exposure to <i>Acinetobacter</i> may contribute to the allergy gap. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2342-2351.	2.7	16
15	Characterization and non-parametric modeling of the developing serum proteome during infancy and early childhood. Scientific Reports, 2018, 8, 5883.	1.6	13
16	Circulating IGF1 and IGFBP3 in relation to the development of Î ² -cell autoimmunity in young children. European Journal of Endocrinology, 2015, 173, 129-137.	1.9	11
17	Earlyâ€life exposure to common virus infections did not differ between coeliac disease patients and controls. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1709-1716.	0.7	11
18	Development of atopic sensitization in Finnish and Estonian children: AÂlatent class analysis in a multicenter cohort. Journal of Allergy and Clinical Immunology, 2019, 143, 1904-1913.e9.	1.5	10

Aleksandr Peet

#	Article	IF	CITATIONS
19	Early childhood infections and the use of antibiotics and antipyreticâ€analgesics in Finland, Estonia and Russian Karelia. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 2075-2082.	0.7	7
20	Rhinoviruses in infancy and risk of immunoglobulin E sensitization. Journal of Medical Virology, 2019, 91, 1470-1478.	2.5	6
21	Coeliac disease and HLAâ€conferred susceptibility to autoimmunity are associated with IgE sensitization in young children. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 692-694.	2.7	3
22	Immunomodulatory Effects of Rhinovirus and Enterovirus Infections During the First Year of Life. Frontiers in Immunology, 2020, 11, 567046.	2.2	2
23	Thyroid peroxidase antibodies are common in children with HLA-conferred susceptibility to type 1 diabetes, but are weakly associated with thyroid function. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 1027-1030.	0.4	2
24	Decreased Need for Correction Boluses with Universal Utilisation of Dual-Wave Boluses in Children with Type 1 Diabetes. Journal of Clinical Medicine, 2022, 11, 1689.	1.0	2
25	Maternal breast milk microbiota and immune markers in relation to subsequent development of celiac disease in offspring. Scientific Reports, 2022, 12, 6607.	1.6	2
26	Higher circulating EGF levels associate with a decreased risk of IgE sensitization in young children. Pediatric Allergy and Immunology, 2021, , .	1.1	1
27	Low serum free thyroxine level in a girl with McCune-Albright syndrome. BMJ Case Reports, 2015, 2015, bcr2014206497.	0.2	1
28	The ease of falsifying blood glucose measurements. Diabetes Research and Clinical Practice, 2014, 104, e57.	1.1	0
29	The 2021 European Training Requirements in Paediatric Endocrinology and Diabetes. Hormone Research in Paediatrics, 2021, , .	0.8	0
30	Growth in Children with HLA-Conferred Susceptibility to Type 1 Diabetes. Endocrinology and Metabolism, 2022, 37, 175-179.	1.3	0