List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent trends in surface metrology. Wear, 2011, 271, 494-508.	3.1	242
2	Age-dependent biomechanical properties of the skin. Postepy Dermatologii I Alergologii, 2013, 5, 302-306.	0.9	205
3	Surface morphology analysis of Duplex Stainless Steel (DSS) in Clean Production using the Power Spectral Density. Measurement: Journal of the International Measurement Confederation, 2016, 94, 464-470.	5.0	98
4	Effects of honed cylinder liner surface texture on tribological properties of piston ring-liner assembly in short time tests. Tribology International, 2017, 113, 137-148.	5.9	81
5	Functional Importance of Surface Texture Parameters. Materials, 2021, 14, 5326.	2.9	80
6	Material ratio curve as information on the state of surface topography—A review. Precision Engineering, 2020, 65, 240-258.	3.4	73
7	Comparison of Different Method of Measurement Geometry Using CMM, Optical Scanner and Computed Tomography 3D. Procedia Engineering, 2014, 69, 255-262.	1.2	57
8	SURFACE TEXTURE ANALYSIS AFTER BALL END MILLING WITH VARIOUS SURFACE INCLINATION OF HARDENED STEEL. Metrology and Measurement Systems, 2014, 21, 145-156.	1.4	56
9	A review of methods of random surface topography modeling. Tribology International, 2020, 152, 106530.	5.9	55
10	Evolutions of cylinder liner surface texture and tribological performance of piston ring-liner assembly. Tribology International, 2018, 127, 545-556.	5.9	46
11	Effects of cylinder liner surface topography on friction and wear of liner-ring system at low temperature. Tribology International, 2018, 121, 148-160.	5.9	44
12	Problem of Non-Measured Points in Surface Texture Measurements. Metrology and Measurement Systems, 2017, 24, 525-536.	1.4	41
13	Surface roughness analysis of hardened steel after highâ€speed milling. Scanning, 2011, 33, 386-395.	1.5	35
14	Spiral sampling as a fast way of data acquisition in surface topography. International Journal of Machine Tools and Manufacture, 2001, 41, 2017-2022.	13.4	32
15	Characterization of the shape of height distribution of two-process profile. Measurement: Journal of the International Measurement Confederation, 2020, 153, 107387.	5.0	30
16	Large Area Concrete Surface Topography Measurements Using Optical 3D Scanner. Metrology and Measurement Systems, 2015, 22, 565-576.	1.4	26
17	Analysis of Surface Microgeometry Created by Electric Discharge Machining. Materials, 2020, 13, 3830.	2.9	25
18	Influence of temperature gradient on surface texture measurements with the use of profilometry. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2017, 65, 53-62	0.8	23

#	Article	IF	CITATIONS
19	The application of micro computed tomography to assess quality of parts manufactured by means of rapid prototyping. Polimery, 2017, 62, 53-59.	0.7	21
20	Calculation of plasticity index of two-process surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 572-582.	1.8	20
21	Assessment of selected metrological properties of laser triangulation sensors. Measurement: Journal of the International Measurement Confederation, 2021, 176, 109190.	5.0	20
22	Analysis of surface texture of plateau-honed cylinder liner – A review. Precision Engineering, 2021, 72, 807-822.	3.4	19
23	The analysis of credibility and reproducibility of surface roughness measurement results. Wear, 2010, 269, 480-484.	3.1	18
24	3D Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes. Materials, 2021, 14, 1987.	2.9	15
25	Reverse Problem in Surface Texture Analysis—One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear. Materials, 2019, 12, 4169.	2.9	14
26	Revisiting lithic edge characterization with microCT: multiscale study of edge curvature, re-entrant features, and profile geometry on Olduvai Gorge quartzite flakes. Archaeological and Anthropological Sciences, 2022, 14, 1.	1.8	14
27	Evaluation of physical indicators and tool wear during grooving of spheroidal cast iron with a novel WCCo/cBN (BNDCC) inserts. Wear, 2020, 454-455, 203301.	3.1	13
28	Thermal Sources of Errors in Surface Texture Imaging. Materials, 2020, 13, 2337.	2.9	13
29	The analysis of directionality of honed cylinder liners surfaces. Scanning, 2014, 36, 95-104.	1.5	12
30	Analysis of 3D printing parameters of gears for hybrid manufacturing. AIP Conference Proceedings, 2018, , .	0.4	12
31	The effect of selected parameters of the honing process on cylinder liner surface topography. Surface Topography: Metrology and Properties, 2014, 2, 025004.	1.6	11
32	Use of White Light and Laser 3D Scanners for Measurement of Mesoscale Surface Asperities. Lecture Notes in Mechanical Engineering, 2019, , 239-256.	0.4	10
33	The Optical Aspect of Errors in Measurements of Surface Asperities Using the Optical Profilometry Method. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	10
34	The Use of Surface Asperities Analysis to Investigate Wear of Bodies in Contact on Example of Brake Elements. Metrology and Measurement Systems, 2010, 17, 271-278.	1.4	10
35	Measurement of Diameter and Roundness on Incomplete Outline of Element with Three-lobbing Deviation. Procedia Engineering, 2014, 69, 247-254.	1.2	9
36	Multiscale assessment of the accuracy of surface replication. Surface Topography: Metrology and Properties, 2014, 2, 044002.	1.6	9

#	Article	IF	CITATIONS
37	Transition from the boundary lubrication to scuffing – The role of metallic surfaces morphology. Wear, 2017, 392-393, 39-49.	3.1	9
38	Analysis of Tool Geometry for the Stamping Process of Large-Size Car Body Components Using a 3D Optical Measurement System. Materials, 2021, 14, 7608.	2.9	9
39	Frictional Properties of the TiNbTaZrO Orthodontic Wire—A Laboratory Comparison to Popular Archwires. Materials, 2021, 14, 6233.	2.9	8
40	The assessment of accuracy of inner shapes manufactured by FDM. AIP Conference Proceedings, 2018, , .	0.4	7
41	The effect of sampling interval on the predictions of an asperity contact model of two-process surfaces. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2017, 65, 391-398.	0.8	6
42	Conditions of the Presence of Bimodal Amplitude Distribution of Two-Process Surfaces. Materials, 2020, 13, 4037.	2.9	6
43	The Use of Drones in Modern Length and Angle Metrology. NATO Science for Peace and Security Series D, Information and Communication Security, 2021, , .	0.2	5
44	Temperature Measurement of Modern Cutting Tools During Turning. Advances in Science and Technology Research Journal, 2020, 14, 37-48.	0.8	5
45	Theoretical aspects of analysis of selected sources of errors in profile measurements of surface asperities. , 2017, , 335-338.	0.1	5
46	Geometrical structure analysis of combustible and non-combustible foams by computed tomography. Journal of Physics: Conference Series, 2018, 1065, 142025.	0.4	4
47	Differences in Roughness Parameter Values from Skid and Skidless Contact Stylus Profilometers. Advances in Science and Technology Research Journal, 2021, 15, 58-70.	0.8	4
48	The use of photogrammetry in improving quality of workpieces after an injection molding process. Polimery, 2018, 63, 134-144.	0.7	4
49	Influence of thermal disturbances on profilometric measurements of surface asperities. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110694.	5.0	4
50	Theoretical considerations on application of artificial intelligence in coordinate metrology. , 2021, , .		4
51	Experimental Study on the Manufacturing of Steel Inclined Walls by Directed Energy Deposition Based on Dimensional and 3D Surface Roughness Measurements. Materials, 2022, 15, 4994.	2.9	4
52	Fast and Precise Non-Contact Measurement of Cylindrical Surfaces with Air Gauges. Materials, 2021, 14, 3728.	2.9	3
53	Reverse engineering and discretization methods of physical objects. , 2015, , 976/183-976/188.	0.1	3
54	Geometry measurement and tool surface evaluation using a focus-variation microscope. , 2017, , 1020-1022.	0.1	3

#	Article	IF	CITATIONS
55	Measurement of Surface Topography Using Computed Tomography. Lecture Notes in Mechanical Engineering, 2018, , 815-824.	0.4	3
56	Effect of Surface Texture on the Structural Adhesive Joining Properties of Aluminum 7075 and TEPEX®. Materials, 2022, 15, 887.	2.9	3
57	The Effects of Selected Measurement Errors on Surface Texture Parameters. Materials, 2022, 15, 4758.	2.9	3
58	Investigations Regarding the Influence of Surface Topography on Emissive Properties of Material. Applied Mechanics and Materials, 2014, 657, 402-406.	0.2	2
59	Experimental Investigation of a Hemisphere Contact with a Hard Flat. Tehnicki Vjesnik, 2018, 25, .	0.2	2
60	Analysis of the Influence of Support During Measurement Using Coordinate Measuring Techniques. Advances in Science and Technology Research Journal, 2019, 13, 22-29.	0.8	2
61	ITA Calibration Laboratory. , 2018, , 430-433.	0.1	2
62	Interferometry and scanning microscopy in asperity measurement of biomedical surfaces. Nanotechnology Perceptions, 2008, 4, 265-288.	0.2	2
63	Measurements of geometrical characteristics of the surface using a confocal chromatic measuring system. , 2016, , 1650-1651.	0.1	2
64	Experimental research of selected sources of errors in profile measurements of surface asperities. , 2017, , 339-343.	0.1	2
65	Discrimination of Surface Topographies Created by Two-Stage Process by Means of Multiscale Analysis. Materials, 2021, 14, 7044.	2.9	2
66	Comparison of Measurements Realized on Computed Tomograph and Optical Scanners for Elements Manufactured by Wire Arc Additive Manufacturing. Lecture Notes in Mechanical Engineering, 2022, , 127-141.	0.4	2
67	The Place of 3D Printing in the Manufacturing and Operational Process Based on the Industry 4.0 Structure. TehniÄki Clasnik, 2022, 16, 252-257.	0.7	2
68	A Concept of in-Process Measurement System for Spline Forming. Management and Production Engineering Review, 2015, 6, 73-81.	1.4	1
69	The use of 3d scanner for testing changes in shape of human limbs under the influence of external mechanical load. E3S Web of Conferences, 2017, 19, 03024.	0.5	1
70	The use of modern measurement techniques for designing pro ecological constructions. E3S Web of Conferences, 2017, 19, 03013.	0.5	1
71	Ensuring the Reliability of the Car Body Controls by Controlling the Current Inspection of Measuring Machines. Lecture Notes in Mechanical Engineering, 2018, , 787-795.	0.4	1
72	Characterisation of Porphyrin-TiO ₂ Complex Using Raman Spectroscopy and Electron Paramagnetic Resonance. Acta Physica Polonica A, 2012, 122, 353-356.	0.5	1

#	Article	IF	CITATIONS
73	Reconstruction of a human skeleton using Reverse Engineering and Rapid Prototyping. , 2015, , 974/084-974/090.	0.1	1
74	Application of computed tomography for measuring of roundness. , 2017, , 1157-1159.	0.1	1
75	Ocena wad i niezgodnoÅ›ci spawalniczych metodÄ tomografii komputerowej CT. PrzeglÄd Spawalnictwa, 2016, 87, .	0.5	1
76	Computed tomography for wall thickness measurements of bent profiles. , 2016, , 1712-1713.	0.1	1
77	Application of photogrammetry to design and inspect bus and railway seats. , 2016, , 1896-1897.	0.1	1
78	The reliability of reproducing automotive components made by FDM printing in reverse engineering. Archives of Mechanical Technology and Materials, 2018, 38, 67-70.	0.3	1
79	Measurement strategy as a determinant of the measurement uncertainty of an optical scanner. Archives of Mechanical Technology and Materials, 2019, 39, 26-31.	0.3	1
80	Climatic Chamber for the Credibility Evaluation of Profilometric Measurements. Advances in Science and Technology Research Journal, 2020, 14, 135-140.	0.8	1
81	Parametric description of one-process surface texture. , 2021, , .		1
82	Verification of Computed Tomograph for Dimensional Measurements. Lecture Notes in Mechanical Engineering, 2022, , 142-155.	0.4	1
83	Study of Thermostable Polyurethane Material Produced by Robotic Milling Machining. Lecture Notes in Mechanical Engineering, 2022, , 68-81.	0.4	Ο
84	The assumptions to credibility assessment of surface topography measurements in various scales. , 2015, , 191/81-191/87.	0.1	0
85	Qualityassurance of turbineblades. Optical 3D metrology in the aerospaceindustry. , 2015, , 973/080-973/083.	0.1	Ο
86	Dynamic photogrammetry applied in crash tests to inspect seats for public transportation. , 2016, , 1718-1719.	0.1	0
87	Acceptance and Reverification of CMM in Industrial Conditions. Advances in Science and Technology Research Journal, 2018, 12, 80-88.	0.8	Ο
88	Evaluation of surface asperities and tool wear after turning with use of a focus variation microscope. , 2018, , 724-726.	0.1	0
89	Credibility of the microscopic measurement of the tool geometry and its influence on surface asperity after ball end milling. , 2018, , 710-712.	0.1	0
90	Principles of good metrological practice in order to ensure reliable measurements of the surface structure. , 2018, , 1104-1109.	0.1	0

#	Article	IF	CITATIONS
91	Influence of Cutting Conditions in the Topography of Texturized Surfaces on Aluminium 7075 Plates Produced by Robot Machining. Lecture Notes in Mechanical Engineering, 2019, , 107-121.	0.4	0
92	Perspectives of modern metrology. , 2019, , 767-773.	0.1	0
93	The Influence of Traverse Speed on Geometry After Abrasive Waterjet Machining. Lecture Notes in Mechanical Engineering, 2020, , 201-213.	0.4	0
94	Ultrasonography, Microcomputed Tomography, and Macroscopic Preparation in an Anatomical Study of the Thoracic Limb of the Golden-Headed Lion Tamarin (Leontopithecus chrysomelas). Applied Sciences (Switzerland), 2022, 12, 1031.	2.5	0
95	Determining the Assumptions for the Selection of Measurement Methods for Products Manufactured with Incremental Methods. TehniÄki Glasnik, 2022, 16, 258-263.	0.7	ο