
Shanhui Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209752/publications.pdf Version: 2024-02-01

<u> Сналнии 7ни</u>

#	Article	IF	CITATIONS
1	Direct production of ethanol with high yield from glycerol via synergistic catalysis by Pd/CoOx and Cu/SBA-15. Applied Catalysis B: Environmental, 2022, 302, 120870.	20.2	8
2	Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities. Advanced Functional Materials, 2022, 32, 2108381.	14.9	51
3	One-step efficient non-hydrogen conversion of cellulose into γ-valerolactone over AgPW/CoNi@NG composite. Applied Catalysis B: Environmental, 2021, 284, 119698.	20.2	24
4	MOF-derived hcp-Co nanoparticles encapsulated in ultrathin graphene for carboxylic acids hydrogenation to alcohols. Journal of Catalysis, 2021, 399, 201-211.	6.2	12
5	Phosphoric Acid Modification of HÎ ² Zeolite for Guaiacol Hydrodeoxygenation. Catalysts, 2021, 11, 962.	3.5	8
6	Kraft lignin derived S and O co-doped porous graphene for metal-free benzylic alcohol oxidation. Catalysis Science and Technology, 2020, 10, 2786-2796.	4.1	9
7	Identification of the dehydration active sites in glycerol hydrogenolysis to 1,2-propanediol over Cu/SiO2 catalysts. Journal of Catalysis, 2020, 383, 13-23.	6.2	41
8	Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone. Journal of Catalysis, 2020, 389, 60-70.	6.2	52
9	Ru nanoparticles deposited on ultrathin TiO2 nanosheets as highly active catalyst for levulinic acid hydrogenation to γ-valerolactone. Applied Catalysis B: Environmental, 2019, 259, 118076.	20.2	58
10	Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO ₂ catalyst combined with Hβ zeolite. RSC Advances, 2019, 9, 3868-3876.	3.6	37
11	Nanosheet MFI Zeolites for Gas Phase Glycerol Dehydration to Acrolein. Catalysts, 2019, 9, 121.	3.5	31
12	Selective hydrogenolysis of lignin and model compounds to monophenols over AuPd/CeO2. Molecular Catalysis, 2019, 462, 69-76.	2.0	27
13	Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals. RSC Advances, 2018, 8, 9152-9160.	3.6	25
14	A Highly Stable Copperâ€Based Catalyst for Clarifying the Catalytic Roles of Cu ^O and Cu ⁺ Species in Methanol Dehydrogenation. Angewandte Chemie - International Edition, 2018, 57, 1836-1840.	13.8	125
15	A Highly Stable Copperâ€Based Catalyst for Clarifying the Catalytic Roles of Cu ⁰ and Cu ⁺ Species in Methanol Dehydrogenation. Angewandte Chemie, 2018, 130, 1854-1858.	2.0	25
16	Ni nanoparticles entrapped in nickel phyllosilicate for selective hydrogenation of guaiacol to 2-methoxycyclohexanol. Applied Catalysis A: General, 2018, 568, 231-241.	4.3	53
17	Effect of tungsten surface density of WO ₃ –ZrO ₂ on its catalytic performance in hydrogenolysis of cellulose to ethylene glycol. RSC Advances, 2017, 7, 8567-8574.	3.6	51
18	Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation. Applied Catalysis B: Environmental, 2017, 211, 89-97.	20.2	48

Shanhui Zhu

#	Article	IF	CITATIONS
19	Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals. ChemSusChem, 2017, 10, 2547-2559.	6.8	90
20	Ordered mesoporous Nb–W oxides for the conversion of glucose to fructose, mannose and 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 2017, 200, 611-619.	20.2	93
21	Advances in Catalytic Hydrogenolysis of Glycerol to Fine Chemicals. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 85-97.	4.9	3
22	One-pot conversion of furfural to alkyl levulinate over bifunctional Au-H ₄ SiW ₁₂ O ₄₀ /ZrO ₂ without external H ₂ . Green Chemistry, 2016, 18, 5667-5675.	9.0	63
23	Integrated Conversion of Hemicellulose and Furfural into γ-Valerolactone over Au/ZrO ₂ Catalyst Combined with ZSM-5. ACS Catalysis, 2016, 6, 2035-2042.	11.2	143
24	Tailored mesoporous copper/ceria catalysts for the selective hydrogenolysis of biomass-derived glycerol and sugar alcohols. Green Chemistry, 2016, 18, 782-791.	9.0	52
25	Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt–WOx/Al2O3 catalysts. Journal of Molecular Catalysis A, 2015, 398, 391-398.	4.8	125
26	Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification. Catalysis Communications, 2015, 62, 48-51.	3.3	64
27	Graphene-based catalysis for biomass conversion. Catalysis Science and Technology, 2015, 5, 3845-3858.	4.1	100
28	Construction of Cu/ZrO2/Al2O3 composites for ethanol synthesis: Synergies of ternary sites for cascade reaction. Applied Catalysis B: Environmental, 2015, 166-167, 551-559.	20.2	85
29	A highly efficient and robust Cu/SiO ₂ catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catalysis Science and Technology, 2015, 5, 1169-1180.	4.1	124
30	Graphene Oxide: An Efficient Acid Catalyst for Alcoholysis and Esterification Reactions. ChemCatChem, 2014, 6, 3080-3083.	3.7	87
31	SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental, 2014, 158-159, 391-399.	20.2	122
32	Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid. Journal of Catalysis, 2013, 306, 155-163.	6.2	143
33	Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support. Applied Catalysis A: General, 2013, 468, 296-304.	4.3	119
34	Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresource Technology, 2013, 130, 45-51.	9.6	132
35	Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. Journal of Catalysis, 2013, 303, 70-79.	6.2	215
36	Alkaline metals modified Pt–H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental, 2013, 140-141, 60-67.	20.2	97

Shanhui Zhu

#	Article	IF	CITATIONS
37	Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids. Catalysis Today, 2013, 212, 120-126.	4.4	131
38	One-step hydrogenolysis of glycerol to biopropanols over Pt–H4SiW12O40/ZrO2 catalysts. Green Chemistry, 2012, 14, 2607.	9.0	106
39	Aqueous-Phase Hydrogenolysis of Glycerol to 1,3-propanediol Over Pt-H4SiW12O40/SiO2. Catalysis Letters, 2012, 142, 267-274.	2.6	79
40	BSKs Mediate Signal Transduction from the Receptor Kinase BRI1 in <i>Arabidopsis</i> . Science, 2008, 321, 557-560.	12.6	579