Kedar Nath Ghimire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12096095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. Journal of Colloid and Interface Science, 2007, 312, 214-223.	5.0	172
2	Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Research, 2003, 37, 4945-4953.	5.3	168
3	Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. Journal of Hazardous Materials, 2008, 154, 1066-1074.	6.5	155
4	ADSORPTIVE REMOVAL OF ARSENIC USING ORANGE JUICE RESIDUE. Separation Science and Technology, 2002, 37, 2785-2799.	1.3	126
5	Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy, 2005, 79, 182-190.	1.8	124
6	Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica. Bioresource Technology, 2008, 99, 32-37.	4.8	85
7	Removal of fluoride using some lanthanum(III)-loaded adsorbents with different functional groups and polymer matrices. Journal of Chemical Technology and Biotechnology, 2003, 78, 1038-1047.	1.6	71
8	Adsorption behavior of orange waste gel for some rare earth ions and its application to the removal of fluoride from water. Chemical Engineering Journal, 2012, 195-196, 289-296.	6.6	69
9	Acidic polysaccharide gels for selective adsorption of lead (II) ion. Separation and Purification Technology, 2005, 42, 219-225.	3.9	64
10	Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water. Bioresource Technology, 2013, 148, 221-227.	4.8	61
11	Adsorptive removal of trace concentration of fluoride ion from water by using dried orange juice residue. Chemical Engineering Journal, 2013, 223, 844-853.	6.6	50
12	Heavy metal removal from contaminated scallop waste for feed and fertilizer application. Bioresource Technology, 2008, 99, 2436-2441.	4.8	35
13	Effective Removal of Arsenic with Lanthanum(III)- and Cerium(III)-loaded Orange Waste Gels. Separation Science and Technology, 2008, 43, 2144-2165.	1.3	30
14	Adsorptive Separation of Metallic Pollutants onto Waste Seaweeds, <i>Porphyra Yezoensis</i> and <i>Ulva Japonica</i> . Separation Science and Technology, 2007, 42, 2003-2018.	1.3	27
15	Preparation and Characterization of Charred Xanthated Sugarcane Bagasse for the Separation of Heavy Metals From Aqueous Solutions. Separation Science and Technology, 2010, 46, 330-339.	1.3	27
16	Agro-Waste Derived Biomass Impregnated with TiO2 as a Potential Adsorbent for Removal of As(III) from Water. Catalysts, 2020, 10, 1125.	1.6	26
17	Biosorbents for Removing Hazardous Metals and Metalloids. Materials, 2017, 10, 857.	1.3	25
18	Adsorptive Separation of Metal Ions onto Phosphorylated Orange Waste. Separation Science and Technology, 2008, 43, 362-375.	1.3	20

2

#	Article	IF	CITATIONS
19	Adsorption of Cd (II), Cu (II), and Zn (II) from Aqueous Solution onto Nitrogen-Functionalized <i>Desmostachya bipinnata</i> . Journal of Chemistry, 2013, 2013, 1-7.	0.9	18
20	Removal and Recovery of Phosphate from Water and Wastewater Using Metal-Loaded Agricultural Waste-Based Adsorbents: A Review. Journal of Institute of Science and Technology, 2019, 24, 77-89.	0.2	17
21	Effective remediation of arsenate from contaminated water by zirconium modified pomegranate peel as an anion exchanger. Journal of Environmental Chemical Engineering, 2021, 9, 106552.	3.3	15
22	Adsorptive Removal of Strontium from Water by using Chemically Modified Orange Juice Residue. Separation Science and Technology, 2014, 49, 1244-1250.	1.3	12
23	Effective biosorption of arsenic from water using La(III) loaded carboxyl functionalized watermelon rind. Arabian Journal of Chemistry, 2022, 15, 103674.	2.3	9
24	Surface Modification of the Biowaste for Purification of Wastewater Contaminated with Toxic Heavy Metals—Lead and Cadmium. Advances in Chemical Engineering and Science, 2013, 03, 178-184.	0.2	7
25	Removal of Fluoride from Aqueous Solution Using Biomass-Based Adsorbents: A Review. Journal of Nepal Chemical Society, 0, 40, 44-51.	0.7	5
26	Leaching Kinetics of Cadmium from Scallop Waste by Dilute Sulfuric Acid Solution. Journal of Chemical Engineering of Japan, 2007, 40, 786-791.	0.3	4
27	Adsorptive Removal and Recovery of Aluminium (III), Iron (II), and Chromium (VI) onto a Low Cost Functionalized Phragmities Karka Waste. Journal of Institute of Science and Technology, 2015, 20, 145-152.	0.2	4
28	Sequestration of phosphate from water onto modified watermelon waste loaded with Zr(IV). Separation Science and Technology, 0, , 1-13.	1.3	3
29	Adsorptive Separation of Arsenic and Phosphorus from an Aquatic Environment Using Metal-loaded Orange Waste. Journal of Ion Exchange, 2007, 18, 428-433.	0.1	3
30	Studies on Functionalization of Apple Waste for Heavy Metal Treatment. Nepal Journal of Science and Technology, 1970, 10, 135-139.	0.1	2
31	Effective Use of Orange Juice Residue for Removing Heavy and Radioactive Metals from Environments. Geosystem Engineering, 2002, 5, 31-37.	0.7	2
32	Development of Biomass-Based Anion Exchanger for the Removal of Trace Concentration of Phosphate from Water. Journal of Nepal Chemical Society, 2020, 41, 56-63.	0.7	2
33	lon Exchange Behavior of Some Metal Ions on Chemically Modified Biowastes. Journal of Ion Exchange, 2003, 14, 233-236.	0.1	0