

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12095022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10, 5106.	12.8	742
2	Water splitting by electrolysis at high current densities under 1.6 volts. Energy and Environmental Science, 2018, 11, 2858-2864.	30.8	438
3	Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy and Environmental Science, 2017, 10, 799-807.	30.8	326
4	Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nature Communications, 2018, 9, 2497.	12.8	243
5	Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nature Communications, 2019, 10, 270.	12.8	227
6	Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy and Environmental Science, 2018, 11, 933-940.	30.8	188
7	Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg ₃ Sb ₂ -Based Materials. ACS Energy Letters, 2017, 2, 2245-2250.	17.4	181
8	Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe. Energy and Environmental Science, 2019, 12, 3089-3098.	30.8	127
9	Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn. Acta Materialia, 2018, 143, 265-271.	7.9	82
10	Design of Highâ€Performance Disordered Halfâ€Heusler Thermoelectric Materials Using 18â€Electron Rule. Advanced Functional Materials, 2019, 29, 1905044.	14.9	81
11	Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials. Journal of Power Sources, 2019, 414, 393-400.	7.8	79
12	Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. Science Advances, 2019, 5, eaav5813.	10.3	52
13	Achieving high room-temperature thermoelectric performance in cubic AgCuTe. Journal of Materials Chemistry A, 2020, 8, 4790-4799.	10.3	46
14	Ultrahigh Power Factor in Thermoelectric System Nb _{0.95} M _{0.05} FeSb (M = Hf,) Tj ETQo	1000.rgB ⁻	[/Qyerlock]
	Large reduction of thermal conductivity leading to enhanced thermoelectric performance in p-type		

15	Mg ₃ Bi ₂ â€"YbMg ₂ Bi ₂ solid solutions. Journal of Materials Chemistry C, 2019, 7, 434-440.	5.5	26
16	A double four-point probe method for reliable measurement of energy conversion efficiency of thermoelectric materials. Energy, 2020, 191, 116599.	8.8	14
17	A rapid method to extract Seebeck coefficient under a large temperature difference. Review of Scientific Instruments, 2017, 88, 094902.	1.3	9