
Mingrui Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12093793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoscopic Mapping of Ictal Neurovascular Coupling in Awake Behaving Mice Using Optical Spectroscopy and Genetically Encoded Calcium Indicators. Frontiers in Neuroscience, 2021, 15, 704834.	1.4	4
2	Innovations in the Neurosurgical Management of Epilepsy. World Neurosurgery, 2020, 139, 775-788.	0.7	8
3	Burst suppression uncovers rapid widespread alterations in network excitability caused by an acute seizure focus. Brain, 2019, 142, 3045-3058.	3.7	10
4	In Vivo Femtosecond Laser Subsurface Cortical Microtransections Attenuate Acute Rat Focal Seizures. Cerebral Cortex, 2019, 29, 3415-3426.	1.6	4
5	Role of inhibitory control in modulating focal seizure spread. Brain, 2018, 141, 2083-2097.	3.7	75
6	Glial Calcium Waves are Triggered by Seizure Activity and Not Essential for Initiating Ictal Onset or Neurovascular Coupling. Cerebral Cortex, 2017, 27, 3318-3330.	1.6	21
7	Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiology of Disease, 2016, 93, 35-46.	2.1	87
8	Reduction in focal ictal activity following transplantation of MGE interneurons requires expression of the GABAA receptor α4 subunit. Frontiers in Cellular Neuroscience, 2015, 9, 127.	1.8	12
9	Optical triggered seizures using a caged 4-Aminopyridine. Frontiers in Neuroscience, 2015, 9, 25.	1.4	11
10	Optical electrocorticogram (OECoG) using wide-field calcium imaging reveals the divergence of neuronal and glial activity during acute rodent seizures. Epilepsy and Behavior, 2015, 49, 61-65.	0.9	17
11	Optogenetic tools for modulating and probing the epileptic network. Epilepsy Research, 2015, 116, 15-26.	0.8	28
12	Wide-field <i>in vivo</i> neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics, 2014, 1, 015003.	1.7	26
13	Contralateral dissociation between neural activity and cerebral blood volume during recurrent acute focal neocortical seizures. Epilepsia, 2014, 55, 1423-1430.	2.6	22
14	Coupling between gamma-band power and cerebral blood volume during recurrent acute neocortical seizures. Neurolmage, 2014, 97, 62-70.	2.1	30
15	Multi-Spectral Imaging of Blood Volume, Metabolism, Oximetry, and Light Scattering. Neuromethods, 2014, , 201-219.	0.2	1
16	Simultaneous Multi-Wavelength Optical Imaging of Neuronal and Hemodynamic Activity. Neuromethods, 2014, , 237-249.	0.2	6
17	The Effects of Focal Epileptic Activity on Regional Sensory-Evoked Neurovascular Coupling and Postictal Modulation of Bilateral Sensory Processing. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1595-1604.	2.4	18
18	Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurgical Focus, 2013, 34, E10.	1.0	21

Mingrui Zhao

#	Article	IF	CITATIONS
19	Dynamic Neurovascular Coupling and Uncoupling during Ictal Onset, Propagation, and Termination Revealed by Simultaneous In Vivo Optical Imaging of Neural Activity and Local Blood Volume. Cerebral Cortex, 2013, 23, 885-899.	1.6	75
20	Tissue hypoxia correlates with intensity of interictal spikes. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1394-1402.	2.4	28
21	Interneuron Progenitors Attenuate the Power of Acute Focal Ictal Discharges. Neurotherapeutics, 2011, 8, 763-773.	2.1	29
22	Subâ€surface, micrometerâ€scale incisions produced in rodent cortex using tightlyâ€focused femtosecond laser pulses. Lasers in Surgery and Medicine, 2011, 43, 382-391.	1.1	14
23	Preictal and Ictal Neurovascular and Metabolic Coupling Surrounding a Seizure Focus. Journal of Neuroscience, 2011, 31, 13292-13300.	1.7	109
24	Spatiotemporal Dynamics of Perfusion and Oximetry during Ictal Discharges in the Rat Neocortex. Journal of Neuroscience, 2009, 29, 2814-2823.	1.7	97
25	Hemodynamic Surrogates for Excitatory Membrane Potential Change During Interictal Epileptiform Events in Rat Neocortex. Journal of Neurophysiology, 2009, 101, 2550-2562.	0.9	47
26	The Importance of Latency in the Focality of Perfusion and Oxygenation Changes Associated with Triggered after Discharges in Human Cortex. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1003-1014.	2.4	21
27	Intraoperative Optical Imaging of Human Cortex. , 2009, , 135-157.		Ο
28	Fibroblast Growth Factor Receptor-1 is Required for Long-Term Potentiation, Memory Consolidation, and Neurogenesis. Biological Psychiatry, 2007, 62, 381-390.	0.7	137
29	Focal Increases in Perfusion and Decreases in Hemoglobin Oxygenation Precede Seizure Onset in Spontaneous Human Epilepsy. Epilepsia, 2007, 48, 2059-2067.	2.6	123
30	Recent developments in oximetry and perfusion-based mapping techniques and their role in the surgical treatment of neocortical epilepsy. Epilepsy and Behavior, 2006, 8, 363-375.	0.9	21
31	Intrinsic optical signal imaging of neocortical seizures: the â€~epileptic dip'. NeuroReport, 2006, 17, 499-503.	0.6	132
32	Neurovascular Coupling and Oximetry During Epileptic Events. Molecular Neurobiology, 2006, 33, 181-198.	1.9	58
33	NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learning and Memory, 2006, 13, 307-315.	0.5	158
34	Cerebellar Deficits and Hyperactivity in Mice Lacking Smad4. Journal of Biological Chemistry, 2003, 278, 42313-42320.	1.6	60
35	Transcriptional profiling reveals regulated genes in the hippocampus during memory formation. Hippocampus, 2002, 12, 821-833.	0.9	76
36	Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 2002, 12, 578-584.	0.9	762

		MINGRUI ZHAO		
#	Article	IF	CITATIONS	
37	Neurogenesis in the adult is involved in the formation of trace memories. Nature, 2001, 410, 372-376	. 13.7	1,853	