Cheol Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12092625/publications.pdf

Version: 2024-02-01

		1163117	1372567	
11	221	8	10	
papers	citations	h-index	g-index	
12	12	12	214	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Sugarâ€Based Polymers from <scp>d</scp> â€Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angewandte Chemie - International Edition, 2021, 60, 849-855.	13.8	21
2	Sugarâ€Based Polymers from d â€Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angewandte Chemie, 2021, 133, 862-868.	2.0	3
3	Titelbild: Sugarâ€Based Polymers from <scp>d</scp> â€Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release (Angew. Chem. 2/2021). Angewandte Chemie, 2021, 133, 521-521.	2.0	О
4	Controlled Cyclopolymerization of 1,5-Hexadiynes to Give Narrow Band Gap Conjugated Polyacetylenes Containing Highly Strained Cyclobutenes. Journal of the American Chemical Society, 2020, 142, 17140-17146.	13.7	14
5	Synthesis of Conjugated Polyenynes with Alternating Six- and Five-Membered Rings via \hat{l}^2 -Selective Cascade Metathesis and Metallotropy Polymerization. ACS Macro Letters, 2020, 9, 339-343.	4.8	5
6	Controlled Living Cascade Polymerization To Make Fully Degradable Sugar-Based Polymers from <scp>d</scp> -Glucose and <scp>d</scp> -Galactose. Journal of the American Chemical Society, 2019, 141, 12207-12211.	13.7	58
7	Living Polymerization Caught in the Act: Direct Observation of an Arrested Intermediate in Metathesis Polymerization. Journal of the American Chemical Society, 2019, 141, 10039-10047.	13.7	28
8	Living Metathesis and Metallotropy Polymerization Gives Conjugated Polyenynes from Multialkynes: How to Design Sequence-Specific Cascades for Polymers. Journal of the American Chemical Society, 2018, 140, 16320-16329.	13.7	15
9	Successful Cyclopolymerization of 1,6-Heptadiynes Using First-Generation Grubbs Catalyst Twenty Years after Its Invention: Revealing a Comprehensive Picture of Cyclopolymerization Using Grubbs Catalysts. Macromolecules, 2017, 50, 3153-3163.	4.8	20
10	Cascade Polymerization via Controlled Tandem Olefin Metathesis/Metallotropic 1,3-Shift Reactions for the Synthesis of Fully Conjugated Polyenynes. Journal of the American Chemical Society, 2017, 139, 11309-11312.	13.7	36
11	Mechanistic Investigations on the Competition between the Cyclopolymerization and $[2 + 2 + 2]$ Cycloaddition of 1,6-Heptadiyne Derivatives Using Second-Generation Grubbs Catalysts. Macromolecules, 2016, 49, 6240-6250.	4.8	21