Kyoichi Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12092610/publications.pdf Version: 2024-02-01

KYOICHI SAITO

#	Article	IF	CITATIONS
1	A novel carotenoid biosynthetic route via oxidosqualene. Biochemical and Biophysical Research Communications, 2022, 599, 75-80.	1.0	1
2	Improvement of the dP-nucleoside-mediated herpes simplex virus thymidine kinase negative-selection system by manipulating dP metabolism genes. Journal of Bioscience and Bioengineering, 2020, 130, 121-127.	1.1	1
3	Directed Evolution of the Stringency of the LuxR <i>Vibrio fischeri</i> Quorum Sensor without OFF-State Selection. ACS Synthetic Biology, 2020, 9, 567-575.	1.9	14
4	Recent Progress in Charged Polymer Chains Grafted by Radiation-Induced Graft Polymerization; Adsorption of Proteins and Immobilization of Inorganic Precipitates. Quantum Beam Science, 2020, 4, 20.	0.6	12
5	Preparation of Palladium-impregnated Fiber and Its Characteristics of Dechlorination of 2-chlorophenol. Radioisotopes, 2019, 68, 443-449.	0.1	0
6	Construction of a Nonnatural C ₆₀ Carotenoid Biosynthetic Pathway. ACS Synthetic Biology, 2019, 8, 511-520.	1.9	9
7	Construction of a pathway to C50-ε-carotene. PLoS ONE, 2019, 14, e0216729.	1.1	2
8	Nonnatural biosynthetic pathway for 2-hydroxylated xanthophylls with C50-carotenoid backbone. Journal of Bioscience and Bioengineering, 2019, 128, 438-444.	1.1	1
9	Genetically engineered biosynthetic pathways for nonnatural C60 carotenoids using C5-elongases and C50-cyclases in Escherichia coli. Scientific Reports, 2019, 9, 2982.	1.6	7
10	Improvement of protein binding capacity of acrylic-acid-grafted fibers by polymer root-to-brush shift. Radiation Physics and Chemistry, 2019, 158, 131-136.	1.4	5
11	Effect of Dose on Amount of Protein Adsorbed on Anion-Exchange Fibers Prepared by Radiation-Induced Emulsion Graft Polymerization. Radioisotopes, 2019, 68, 451-457.	0.1	0
12	Innovative Polymeric Adsorbents. , 2018, , .		2
13	High-resolution separation of neodymium and dysprosium ions utilizing extractant-impregnated graft-type particles. Journal of Chromatography A, 2018, 1533, 10-16.	1.8	4
14	Rapid separation of zirconium using microvolume anion-exchange cartridge for 93Zr determination with isotope dilution ICP-MS. Talanta, 2018, 185, 98-105.	2.9	6
15	Acrylic Acid-grafted Fibers Enable High-capacity Binding of Lysozyme Dissolved in High-concentration Phosphate Buffer. Radioisotopes, 2018, 67, 321-328.	0.1	0
16	Adsorption of Catechin in Green-Tea Extracts Using <i>N</i> -Vinylacetamide-Grafted Fiber. Radioisotopes, 2018, 67, 551-557.	0.1	0
17	ã€Original Contribution】Production of Polyethylene–Based Ion–Exchange Membranes for Electrodialysis of Seawater by Electron Beam–Induced Graft Polymerizationï¼^Ill)Mono–Valent Anion Selective Anion–Exchange Membranes. Membrane, 2018, 43, 231-237.	0.0	0
18	Tweezing the cofactor preference of gymnosperm pinene synthase. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1058-1061.	0.6	3

#	Article	IF	CITATIONS
19	Revolution in the Form of Polymeric Adsorbents 1: Porous Hollow-Fiber Membranes and Porous Sheets. , 2018, , 53-107.		0
20	Revolution in the Form of Polymeric Adsorbents 2: Fibers, Films, and Particles. , 2018, , 109-143.		0
21	Competition Between Graft Chains and Rivals. , 2018, , 145-167.		Ο
22	Commercial Products by Radiation-Induced Graft Polymerization. , 2018, , 169-181.		1
23	Fundamentals of Radiation-Induced Graft Polymerization. , 2018, , 1-22.		2
24	Adsorption of Catechin in Green-Tea Extracts onto NVP-Grafted Fiber and Its Elution with NaOH. Kagaku Kogaku Ronbunshu, 2018, 44, 99-102.	0.1	1
25	Improvement in Impregnation Percentage of Sodium Titanate of Adsorptive Fiber for Strontium through Repetitive Immobilization of Peroxotitanium Complex Anions to Anion-Exchange Fiber. Radioisotopes, 2018, 67, 213-219.	0.1	Ο
26	Adsorption of Caffeine onto Tannic Acid-Immobilized Fiber and its Elution with Hot Water. Kagaku Kogaku Ronbunshu, 2018, 44, 298-302.	0.1	0
27	Recovery of Rare Metals Using Nucleic Acid Bases and Extractants Immobilized by Grafted Polymer Chains. Bunseki Kagaku, 2017, 66, 771-782.	0.1	2
28	Removal of Radioactive Substances Using Inorganic Compounds Entangled by Polymer Chain Grafted onto Fiber. Bunseki Kagaku, 2017, 66, 233-242.	0.1	1
29	Preparation of Hydrous Cerium Oxide-impregnated Fibers for the Recovery of Antimony from Aqueous Media. Bunseki Kagaku, 2017, 66, 853-856.	0.1	Ο
30	Directed evolution and expression tuning of geraniol synthase for efficient geraniol production in <i>Escherichia coli</i> . Journal of General and Applied Microbiology, 2017, 63, 287-295.	0.4	7
31	Preparation of Cation-Exchange Fibers with High Protein-Binding Capacities by Pre-Irradiation Induced Emulsion Graft Polymerization. Kagaku Kogaku Ronbunshu, 2017, 43, 88-94.	0.1	2
32	Preparation of Sr Adsorptive Fiber by Impregnating with Crown Ether Derivative for ⁹⁰ Sr Measurement. Bunseki Kagaku, 2017, 66, 189-193.	0.1	1
33	Preparation of Anion-exchange Fibers with Radiation-induced Emulsion Graft Polymerization for Rapid Protein Purification. Radioisotopes, 2017, 66, 243-249.	0.1	1
34	19 Development of High-Performance Polymeric Adsorbents by Radiation-Induced Graft Polymerization. Radioisotopes, 2017, 66, 543-547.	0.1	0
35	Directed evolution of the autoinducer selectivity of <i>Vibrio fischeri</i> LuxR. Journal of General and Applied Microbiology, 2016, 62, 240-247.	0.4	19
36	Directed evolution of Vibrio fischeri LuxR signal sensitivity. Journal of Bioscience and Bioengineering, 2016, 122, 533-538.	1.1	12

#	Article	IF	CITATIONS
37	Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase. ACS Synthetic Biology, 2016, 5, 1011-1020.	1.9	79
38	Impregnation structure of cobalt ferrocyanide microparticles by the polymer chain grafted onto nylon fiber. Journal of Nuclear Science and Technology, 2016, 53, 1251-1255.	0.7	20
39	Preparation of Microvolume Anion-Exchange Cartridge for Inductively Coupled Plasma Mass Spectrometry-Based Determination of ²³⁷ Np Content in Spent Nuclear Fuel. Analytical Chemistry, 2016, 88, 3149-3155.	3.2	10
40	Rapid Diversification of Betl-Based Transcriptional Switches for the Control of Biosynthetic Pathways and Genetic Circuits. ACS Synthetic Biology, 2016, 5, 1201-1210.	1.9	24
41	Development of Adsorptive Fiber Capable of Removing Radioactive Substances from Contaminated Water in the Harbor of TEPCO Fukushima Daiichi Nuclear Power Plant(1) Removal of Radioactive Caesium. Radioisotopes, 2016, 65, 7-14.	0.1	2
42	Preparation of Extractant-Impregnated Fiber for Recovery of Palladium from Hydrochloric Acid Solution. Kagaku Kogaku Ronbunshu, 2016, 42, 113-118.	0.1	0
43	ã€Original Contribution〠Fluxes and Protein Binding Capacities of Diamine–Immobilized Porous Hollow–Fiber Membraness. Membrane, 2015, 40, 216-222.	0.0	0
44	Liquid-Based Iterative Recombineering Method Tolerant to Counter-Selection Escapes. PLoS ONE, 2015, 10, e0119818.	1.1	8
45	Rapid and Liquid-Based Selection of Genetic Switches Using Nucleoside Kinase Fused with Aminoglycoside Phosphotransferase. PLoS ONE, 2015, 10, e0120243.	1.1	8
46	A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes. Nature Communications, 2015, 6, 7534.	5.8	61
47	Evolutionary Design of Choline-Inducible and -Repressible T7-Based Induction Systems. ACS Synthetic Biology, 2015, 4, 1352-1360.	1.9	18
48	Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. Journal of Bioscience and Bioengineering, 2015, 119, 165-171.	1.1	59
49	Nd/Dy Resolution by SPE-Based Elution Chromatography with Bis(2-ethylhexyl) Phosphate (HDEHP)-Impregnated Fiber-Packed Bed. Kagaku Kogaku Ronbunshu, 2015, 41, 220-227.	0.1	4
50	Impregnation Process of Insoluble Cobalt Ferrocyanide onto Anion-Exchange Fiber Prepared by Radiation-Induced Graft Polymerization. Radioisotopes, 2015, 64, 219-228.	0.1	4
51	Preparation of Catalase-immobilized and Palladium-impregnated Fibers for Rapid Decomposition of Hydroperoxide in Water. Radioisotopes, 2015, 64, 501-507.	0.1	1
52	ICONE23-1873 Radioactive Strontium Removal from Seawater and Groundwater with Adsorptive Fibers Prepared by Radiation-Induced Graft Polymerization. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2015, 2015.23, _ICONE23-1ICONE23-1.	0.0	0
53	Preparation of Polymeric Fibers Immobilizing Inorganic Compounds, Enzymes, and Extractants Designed for Radionuclide Decontamination, Ultrapure Water Production, and Rare-Earth Metal Purification. Kobunshi Ronbunshu, 2014, 71, 211-222.	0.2	2
54	Simple Method for High-Density Impregnation of Aliquat 336 onto Porous Sheet and Binding Performance of Resulting Sheet for Palladium Ions. Separation Science and Technology, 2014, 49, 154-159.	1.3	4

Κγοιςηι Saito

#	Article	IF	CITATIONS
55	A High-Throughput Colorimetric Screening Assay for Terpene Synthase Activity Based on Substrate Consumption. PLoS ONE, 2014, 9, e93317.	1.1	49
56	Construction of carotenoid biosynthetic pathways using squalene synthase. FEBS Letters, 2014, 588, 436-442.	1.3	31
57	Directed evolution of squalene synthase for dehydrosqualene biosynthesis. FEBS Letters, 2014, 588, 3375-3381.	1.3	8
58	Evolutionary analysis of the functional plasticity of Staphylococcus aureus C30 carotenoid synthase. Journal of Bioscience and Bioengineering, 2014, 117, 431-436.	1.1	12
59	Similarity of Rare Earth Extraction by Acidic Extractant Bis(2-ethylhexyl) Phosphate (HDEHP) Supported on a Dodecylamino-Group-Containing Graft Chain and by HDEHP Dissolved in Dodecane. Kagaku Kogaku Ronbunshu, 2014, 40, 404-409.	0.1	5
60	Preparation of Porous Adsorbers and Supports Most Favorable for Separation by Using Radiation-Induced Graft Polymerization. Kobunshi Ronbunshu, 2014, 71, 302-312.	0.2	1
61	Crosslinked-Chelating Porous Sheet with High Dynamic Binding Capacity of Metal Ions. Solvent Extraction and Ion Exchange, 2013, 31, 210-220.	0.8	4
62	Dependence of protein binding capacity of dimethylamino-Î ³ -butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization. Radiation Physics and Chemistry, 2013, 87, 53-58.	1.4	5
63	Preparation of titania hollow particles with independently controlled void size and shell thickness by catalytic templating core–shell polymer particles. Colloid and Polymer Science, 2013, 291, 215-222.	1.0	17
64	Effect of Dose on Mole Percentages of Polymer Brush and Root Grafted onto Porous Polyethylene Sheet by Radiation-Induced Graft Polymerization. Industrial & Engineering Chemistry Research, 2013, 52, 12582-12586.	1.8	10
65	Immobilization of an Esterase Inhibitor on a Porous Hollow-Fiber Membrane by Radiation-Induced Graft Polymerization for Developing a Diagnostic Tool for Feline Kidney Diseases. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2061-2064.	0.6	3
66	Protein-Binding Characteristics of Anion-Exchange Particles Prepared by Radiation-Induced Graft Polymerization at Low Temperatures. Journal of Chemical Engineering of Japan, 2013, 46, 588-592.	0.3	5
67	Removal of Urea from Water Using Urease-Immobilized Fibers. Journal of Chemical Engineering of Japan, 2013, 46, 509-513.	0.3	8
68	Determination of Mole Percentages of Brush and Root of Polymer Chain Grafted onto Porous Sheet. Journal of Chemical Engineering of Japan, 2013, 46, 414-419.	0.3	11
69	Effect of Salt Concentration of Cesium Solution on Cesium-Binding Capacity of Potassium Cobalt-Hexacyanoferrate-Impregnated Fiber. Kagaku Kogaku Ronbunshu, 2013, 39, 28-32.	0.1	7
70	Comparison of Resolution of Proteins in Elution Chromatography between Cation-Exchange Polymer Brush Immobilized Particle- and Commercially Available Cation-Exchange-Bead-Packed Beds. Journal of Ion Exchange, 2013, 24, 14-20.	0.1	3
71	Development of High-Performance Ion-Exchange Polymers by Radiation-Induced Graft Polymerization. Journal of Ion Exchange, 2013, 24, 21-28.	0.1	0
72	Dependence of Lanthanide-Ion Binding Performance on HDEHP Concentration in HDEHP Impregnation to Porous Sheet. Solvent Extraction and Ion Exchange, 2012, 30, 171-180.	0.8	9

#	Article	IF	CITATIONS
73	Surface-initiated enzymatic vinyl polymerization: synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polymer Chemistry, 2012, 3, 1123.	1.9	29
74	Enzymatic miniemulsion polymerization of styrene with a polymerizable surfactant. Polymer Chemistry, 2012, 3, 900.	1.9	30
75	Protein Resolution in Elution Chromatography Using Novel Cation-Exchange Polymer-Brush-Immobilized Particles. Journal of Chemical Engineering of Japan, 2012, 45, 896-902.	0.3	5
76	ã€Original Contribution】 Proposal of Dual-Affinity Adsorption of Protein to Dual Ligands Immobilized onto Porous Hollow-Fiber Membrane. Membrane, 2012, 37, 95-101.	0.0	0
77	Removal of Boron Using Nylon-Based Chelating Fibers. Industrial & Engineering Chemistry Research, 2011, 50, 5727-5732.	1.8	62
78	Removal of Cesium Using Cobalt-Ferrocyanide-Impregnated Polymer-Chain-Grafted Fibers. Journal of Nuclear Science and Technology, 2011, 48, 1281-1284.	0.7	54
79	Electrodialysis of Sulfuric Acid with Cation-Exchange Membranes Prepared by Electron-Beam-Induced Graft Polymerization. Journal of Ion Exchange, 2011, 22, 53-57.	0.1	10
80	A nucleoside kinase as a dual selector for genetic switches and circuits. Nucleic Acids Research, 2011, 39, e12-e12.	6.5	39
81	Effect of Chelating Group Density of Crosslinked Graft Chain on Dynamic Binding Capacity for Metal Ions. Journal of Ion Exchange, 2011, 22, 47-52.	0.1	4
82	Selection of solvents suitable for immobilization of N-methyglucamine on poly(glycidyl methacrylate) grafted onto nylon fiber. Journal of Ion Exchange, 2011, 22, 81-86.	0.1	1
83	Modification of a Porous Sheet (MAPS) for the High-Performance Solid-Phase Extraction of Trace and Ultratrace Elements by Radiation-Induced Graft Polymerization. Analytical Sciences, 2010, 26, 649-658.	0.8	16
84	Binding of Phosphotyrosine to Gallium-Ion-Immobilized Porous Hollow-Fiber Membrane. Membrane, 2010, 35, 242-247.	0.0	1
85	Preparation of Heat- and Alkali-resistant Anion-exchange Membranes by Electron-beam-induced Graft Polymerization of Bromo-butyl Styrene onto Polyethylene Film. Membrane, 2010, 35, 305-310.	0.0	1
86	Modification of a hydrophobic-ligand-containing porous sheet using tri-n-octylphosphine oxide, and its adsorption/elution of bismuth ions. Reactive and Functional Polymers, 2010, 70, 986-990.	2.0	8
87	Carboxybetaine–Group Immobilized onto Pore Surface Reduced Protein Adsorption to Porous Membrane. Membrane, 2010, 35, 86-92.	0.0	2
88	Preparation of Cation-Exchange Particle Designed for High-Speed Collection of Proteins by Radiation-Induced Graft Polymerization. Journal of Ion Exchange, 2010, 21, 29-34.	0.1	6
89	Purification of His–Tagged Protein Using an Immobilized NickelAffinity Porous Hollow–Fiber Membrane. Membrane, 2009, 34, 233-238	0.0	2
90	Preparation of Size–Exclusion Polymer Chain Grafted onto the Pore Surface of a Porous Hollow–Fiber Membrane. Membrane, 2009, 34, 220-226.	0.0	5

#	Article	IF	CITATIONS
91	High-performance collection of palladium ions in acidic media using nucleic-acid-base-immobilized porous hollow-fiber membranes. Journal of Membrane Science, 2008, 307, 82-87.	4.1	20
92	Production of Tripeptide from Gelatin Using Collagenase-Immobilized Porous Hollow-Fiber Membrane. Biotechnology Progress, 2008, 19, 1365-1367.	1.3	14
93	Separation of U and Pu in spent nuclear fuel sample using anion-exchange-group-introduced porous polymer sheet for ICP-MS determination. Talanta, 2008, 77, 695-700.	2.9	11
94	Protein Purification Using Immobilized Metal Affinity Porous Sheet. Journal of Ion Exchange, 2008, 19, 101-106.	0.1	2
95	Impregnation of a Neutral Extractant to Hydrophobic/Hydrophilic Groups Introduced into the Polymer Chain Grafted onto a Porous Membrane. Membrane, 2008, 33, 32-38.	0.0	9
96	Effects of Aliquat 336 Concentration and Solvent Composition on Amount of Aliquat 336 Impregnated and Liquid Permeability of Aliquat 336-Impregnated Porous Hollow-Fiber Membrane. Membrane, 2007, 32, 168-174.	0.0	6
97	Recovery of p.t-CEtGeO Using Chelating Porous Membranes Prepared with Various Compositions of Dioxane/Water Solvent. Journal of Ion Exchange, 2007, 18, 68-74.	0.1	4
98	Design of polymer brushes for immobilizing enzymes onto hollow fiber micropores in organic media reaction. Biochemical Engineering Journal, 2007, 37, 159-165.	1.8	7
99	High-throughput solid-phase extraction of metal ions using an iminodiacetate chelating porous disk prepared by graft polymerization. Journal of Chromatography A, 2007, 1176, 37-42.	1.8	28
100	Protein Binding to Amphoteric Polymer Brushes Grafted onto a Porous Hollow-Fiber Membrane. Biotechnology Progress, 2007, 23, 1425-1430.	1.3	15
101	Comparison of Gelsolin Purification Performance between Anion-exchange-graft-chain-containing Porous Membrane and Anion-exchange Bead-packed Bed. Journal of Ion Exchange, 2007, 18, 2-8.	0.1	1
102	Preparation of Extractant-impregnated Porous Sheets for High-speed Separation of Radionuclides. Journal of Ion Exchange, 2007, 18, 480-485.	0.1	7
103	Rapid Separation of Actinides Using an Anion-exchange Polymer Chain Grafted onto a Porous Sheet. Journal of Ion Exchange, 2007, 18, 486-491.	0.1	2
104	Protein Binding Characteristics of Amphoteric Polymer Brushes Grafted onto Porous Hollow-Fiber Membrane. Journal of Ion Exchange, 2007, 18, 492-497.	0.1	1
105	Impregnation of an Acidic Extractant Cyanex 272 to the Alkylamino Group and Alkylthiol Group Introduced into the Polymer Chain Grafted onto a Porous Membrane. Membrane, 2007, 32, 109-115.	0.0	7
106	Recovery of Germanium Oxide Using a Chelating-fiber-wound Filter. Journal of Ion Exchange, 2007, 18, 9-13.	0.1	0
107	Recovery of Sb(V) using a functional-ligand-containing porous hollow-fiber membrane prepared by radiation-induced graft polymerization. Hydrometallurgy, 2006, 81, 190-196.	1.8	22
108	Preparation of Aliquat 336-impregnated porous membrane. Journal of Membrane Science, 2006, 281, 195-202.	4.1	17

#	Article	IF	CITATIONS
109	Esterification of lauric acid using lipase immobilized in the micropores of a hollow-fiber membrane. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 209-213.	0.8	16
110	Affinity Elution of Gelsolin Adsorbed onto an Anion-Exchange Porous Membrane. Membrane, 2005, 30, 269-274.	0.0	3
111	High-performance purification of gelsolin from plasma using anion-exchange porous hollow-fiber membrane. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 821, 153-158.	1.2	25
112	Selection of the alkylamino group introduced into the polymer chain grafted onto a porous membrane for the impregnation of an acidic extractant. Journal of Membrane Science, 2005, 262, 153-158.	4.1	21
113	Preparation of an extractant-impregnated porous membrane for the high-speed separation of a metal ion. Journal of Chromatography A, 2005, 1094, 158-164.	1.8	29
114	Introduction of taurine into polymer brush grafted onto porous hollow-fiber membrane. Journal of Membrane Science, 2005, 264, 97-103.	4.1	26
115	Interaction Between an Acidic Extractant and an Octadecylamino Group Introduced into a Grafted Polymer Chain. Separation Science and Technology, 2005, 40, 3349-3364.	1.3	8
116	Skin-layer formation on porous membrane by immobilized dextransucrase. AICHE Journal, 2004, 50, 696-700.	1.8	8
117	Structure of polyol–ligand-containing polymer brush on the porous membrane for antimony(III) binding. Journal of Membrane Science, 2004, 236, 65-71.	4.1	24
118	Removal of Antimony (III) Using Polyol-Ligand-Containing Porous Hollow-Fiber Membranes. Separation Science and Technology, 2004, 39, 3011-3022.	1.3	30
119	High-speed recovery of antimony using chelating porous hollow-fiber membrane. Journal of Membrane Science, 2003, 214, 275-281.	4.1	47
120	Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 790, 131-142.	1.2	128
121	Highly Multilayered Urease Decomposes Highly Concentrated Urea. Biotechnology Progress, 2003, 19, 396-399.	1.3	19
122	Aquaculture of Uranium in Seawater by a Fabric-Adsorbent Submerged System. Nuclear Technology, 2003, 144, 274-278.	0.7	151
123	Charged polymer brush grafted onto porous hollow-fiber membrane improves separation and reaction in biotechnology. Separation Science and Technology, 2002, 37, 535-554.	1.3	31
124	Conversion of Dextran to Cycloisomaltooligosaccharides Using an Enzyme-Immobilized Porous Hollow-Fiber Membrane. Journal of Agricultural and Food Chemistry, 2002, 50, 1073-1076.	2.4	17
125	Cation-Exchange Porous Hollow-Fiber Membranes Prepared by Radiation-Induced Cografting of GMA and EDMA Which Improved Pure Water Permeability and Sodium Ion Adsorptivity. Industrial & Engineering Chemistry Research, 2002, 41, 5686-5691.	1.8	22
126	High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes. Radiation Physics and Chemistry, 2002, 63, 143-149.	1.4	18

#	Article	IF	CITATIONS
127	Optimization of reaction conditions in production of cycloisomaltooligosaccharides using enzyme immobilized in multilayers onto pore surface of porous hollow-fiber membranes. Journal of Membrane Science, 2002, 205, 175-182.	4.1	15
128	Production of Cycloisomaltooligosaccharides from Dextran Using Enzyme Immobilized in Multilayers onto Porous Membranes. Biotechnology Progress, 2002, 18, 465-469.	1.3	29
129	Solvent effect on protein binding by polymer brush grafted onto porous membranes. Journal of Chromatography A, 2002, 953, 101-109.	1.8	23
130	Binding of ionic surfactants to charged polymer brushes grafted onto porous substrates. Journal of Chromatography A, 2002, 954, 89-97.	1.8	8
131	Convection-aided collection of metal ions using chelating porous flat-sheet membranes. Journal of Chromatography A, 2002, 954, 277-283.	1.8	30
132	Preparation of Chelating Porous Membranes for the Recovery of Germanium and their Adsorption Characteristics Journal of Ion Exchange, 2002, 13, 10-14.	0.1	3
133	Immobilization of ascorbic acid oxydase in multilayers onto porous hollow-fiber membrane. Journal of Membrane Science, 2001, 191, 207-213.	4.1	18
134	Comparison of l-tryptophan binding capacity of BSA captured by a polymer brush with that of BSA adsorbed onto a gel network. Journal of Chromatography A, 2001, 925, 41-47.	1.8	9
135	High Conversion in Asymmetric Hydrolysis during Permeation through Enzyme-Multilayered Porous Hollow-Fiber Membranes. Biotechnology Progress, 2001, 17, 872-875.	1.3	15
136	Purification of Docosahexaenoic Acid Ethyl Ester Using a Silver-Ion-Immobilized Porous Hollow-Fiber Membrane Module. Biotechnology Progress, 2001, 17, 893-896.	1.3	8
137	High-performance polymeric materials for separation and reaction, prepared by radiation-induced graft polymerization. Studies in Physical and Theoretical Chemistry, 2001, , 671-704.	0.0	11
138	Fractional Elution and Determination of Uranium and Vanadium Adsorbed on Amidoxime Fiber from Seawater Analytical Sciences, 2000, 16, 429-432.	0.8	82
139	High-speed recovery of germanium in a convection-aided mode using functional porous hollow-fiber membranes. Journal of Chromatography A, 2000, 888, 43-49.	1.8	50
140	Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiation Physics and Chemistry, 2000, 59, 405-411.	1.4	97
141	Multilayer Binding of Proteins to Polymer Chains Grafted onto Porous Hollow-Fiber Membranes Containing Different Anion-Exchange Groups. Biotechnology Progress, 2000, 16, 456-461.	1.3	45
142	Comparison of Amidoxime Adsorbents Prepared by Cografting Methacrylic Acid and 2-Hydroxyethyl Methacrylate with Acrylonitrile onto Polyethylene. Industrial & Engineering Chemistry Research, 2000, 39, 2910-2915.	1.8	81
143	Extension and Shrinkage of Polymer Brush Grafted onto Porous Membrane Induced by Protein Binding. Macromolecules, 2000, 33, 1306-1309.	2.2	42
144	Preparation of silver-ion-loaded nonwoven fabric by radiation-induced graft polymerization. Reactive and Functional Polymers, 1999, 40, 275-279.	2.0	25

#	Article	IF	CITATIONS
145	Radiation-induced graft polymerization is the key to develop high-performance functional materials for protein purification. Radiation Physics and Chemistry, 1999, 54, 517-525.	1.4	46
146	Binding of dl-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode. Journal of Membrane Science, 1999, 152, 143-149.	4.1	38
147	lonic crosslinking of SO3H-group-containing graft chains helps to capture lysozyme in a permeation mode. Journal of Chromatography A, 1999, 848, 161-168.	1.8	43
148	Selective binding of docosahexaenoic acid ethyl ester to a silver-ion-loaded porous hollow-fiber membrane. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 771-775.	0.8	17
149	Terminally Anchored Polymer Brushes on a Semicrystalline Microporous Polyethylene Fiber. Chemistry of Materials, 1999, 11, 3091-3095.	3.2	9
150	Characteristics of Porous Anion-Exchange Membranes Prepared by Cografting of Glycidyl Methacrylate with Divinylbenzene. Chemistry of Materials, 1999, 11, 1986-1989.	3.2	22
151	Chiral separation of dl-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde. Journal of Chromatography A, 1998, 822, 53-58.	1.8	57
152	Protein Adsorption Characteristics of a Sulfonic-Acid-Group-Containing Nonwoven Fabric. Biotechnology Progress, 1998, 14, 661-663.	1.3	16
153	Tailoring a Brush-Type Interface Favorable for Capturing Microbial Cells. Journal of Colloid and Interface Science, 1998, 200, 66-73.	5.0	23
154	Fluorescence Study on the Conformational Change of an Amino Group-Containing Polymer Chain Grafted onto a Polyethylene Microfiltration Membrane. Macromolecules, 1998, 31, 366-370.	2.2	19
155	Chiral Separation of DL-Tryptophan Using Bovine-Serum-Albumin-Multilayered Porous Hollow-Fiber Membrane Kagaku Kogaku Ronbunshu, 1998, 24, 458-461.	0.1	4
156	Adsorption of Uranium in Sea Water Using Amidoxime Adsorbents Prepared by Radiation-Induced Cografting Nippon Genshiryoku Gakkaishi/Journal of the Atomic Energy Society of Japan, 1998, 40, 878-880.	0.0	20
157	Adsorption Characteristics of Binary Proteins onto Anion-Exchange Porous Hollow-Fiber Membrane Journal of Ion Exchange, 1998, 9, 74-80.	0.1	3
158	Selection of a precursor monomer for the introduction of affinity ligands onto a porous membrane by radiation-induced graft polymerization. Journal of Chromatography A, 1997, 758, 209-215.	1.8	35
159	Protein Adsorption and Elution Performances of Porous Hollow-Fiber Membranes Containing Various Hydrophobic Ligands. Biotechnology Progress, 1997, 13, 89-95.	1.3	34
160	Repeated use of a hydrophobic ligand-containing porous membrane for protein recovery. Journal of Membrane Science, 1997, 134, 67-73.	4.1	24
161	Capture of microbial cells on brush-type polymeric materials bearing different functional groups. , 1997, 53, 523-528.		20
162	Local mobility of polymer chain grafted onto polyethylene monitored by fluorescence depolarization. Chemical Physics Letters, 1997, 275, 203-210.	1.2	9

#	Article	IF	CITATIONS
163	Module performance of anion-exchange porous hollow-fiber membranes for high-speed protein recovery. Journal of Chromatography A, 1997, 782, 159-165.	1.8	33
164	Comparison of Formation Site of Graft Chain between Nonporous and Porous Films Prepared by RIGP. Chemistry of Materials, 1996, 8, 2618-2621.	3.2	19
165	Reactor of vapor-phase graft polymerization of reactive monomer onto porous hollow fiber. AICHE Journal, 1996, 42, 1095-1100.	1.8	5
166	Control of phenyl-group site introduced on the graft chain for hydrophobic interaction chromatography. Reactive and Functional Polymers, 1996, 29, 115-122.	2.0	21
167	Radiation-induced grafting of phenylalanine-containing monomer onto a porous membrane. Reactive and Functional Polymers, 1996, 31, 103-110.	2.0	15
168	Amino acid addition to epoxy-group-containing polymer chain grafted onto a porous membrane. Journal of Membrane Science, 1996, 109, 87-92.	4.1	22
169	Binary metal-ion sorption during permeation through chelating porous membranes. Journal of Membrane Science, 1996, 111, 1-6.	4.1	49
170	Ring-opening reaction of poly-GMA chain grafted onto a porous membrane. Journal of Membrane Science, 1996, 117, 33-38.	4.1	59
171	Comparison of protein adsorption by anion-exchange interaction onto porous hollow-fiber membrane and gel bead-packed bed. Journal of Membrane Science, 1996, 117, 135-142.	4.1	50
172	Adsorption Kinetics of Microbial Cells onto a Novel Brush-Type Polymeric Material Prepared by Radiation-Induced Graft Polymerization. Biotechnology Progress, 1996, 12, 178-183.	1.3	15
173	Comparison of Two Convection-Aided Protein Adsorption Methods Using Porous Membranes and Perfusion Beads. Biotechnology Progress, 1996, 12, 869-872.	1.3	36
174	Proton Transport Through Polyethyleneâ€īetrafluoroethyleneâ€Copolymerâ€Based Membrane Containing Sulfonic Acid Group Prepared by RIGP. Journal of the Electrochemical Society, 1996, 143, 2795-2799.	1.3	31
175	Hydrodynamic Evaluation of Three-Dimensional Adsorption of Protein to a Polymer Chain Grafted onto a Porous Substrate. Journal of Colloid and Interface Science, 1995, 176, 95-100.	5.0	34
176	Preparation of a hydrophobic porous membrane containing phenyl groups and its protein adsorption performance. Journal of Chromatography A, 1995, 718, 27-34.	1.8	51
177	Highly Efficient Enzyme Recovery Using a Porous Membrane with Immobilized Tentacle Polymer Chains. Bio/technology, 1995, 13, 795-797.	1.9	47
178	Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization. Radiation Physics and Chemistry, 1995, 46, 239-245.	1.4	58
179	High-throughput processing of proteins using a porous and tentacle anion-exchange membrane. Journal of Chromatography A, 1995, 689, 211-218.	1.8	123
180	Novel Ionâ€Exchange Membranes for Electrodialysis Prepared by Radiationâ€Induced Graft Polymerization. Journal of the Electrochemical Society, 1995, 142, 3659-3663.	1.3	55

#	Article	IF	CITATIONS
181	Collection of Palladium Using an Ethylenediamine-Immobilized Chelating Microporous Membrane Membrane, 1995, 20, 224-228.	0.0	4
182	High collection rate of Pd in hydrochloric acid medium using chelating microporous membrane. Journal of Membrane Science, 1994, 95, 63-69.	4.1	32
183	Binding of lysozyme onto a cation-exchange microporous membrane containing tentacle-type grafted polymer branches. Biotechnology Progress, 1994, 10, 76-81.	1.3	82
184	Reduction of nonselective adsorption of proteins by hydrophilization of microfiltration membranes by radiation-induced grafting. Biotechnology Progress, 1994, 10, 114-120.	1.3	54
185	Hydrolysis of Methyl Acetate and Sucrose in SO3H-Group-Containing Grafted Polymer Chains Prepared by Radiation-Induced Graft Polymerization. Industrial & Engineering Chemistry Research, 1994, 33, 2215-2219.	1.8	27
186	Effect of seawater temperature on uranium recovery from seawater using amidoxime adsorbents. Industrial & Engineering Chemistry Research, 1994, 33, 662-666.	1.8	65
187	Molecular weight distribution of methyl methacrylate grafted onto a microfiltration membrane by radiation-induced graft polymerization. Journal of Membrane Science, 1993, 85, 71-80.	4.1	28
188	Design of urea-permeable anion-exchange membrane by radiation-induced graft polymerization. Journal of Membrane Science, 1993, 81, 295-305.	4.1	33
189	Preparation of microfiltration membranes containing anion-exchange groups. Journal of Membrane Science, 1993, 76, 209-218.	4.1	36
190	Attachment of sulfonic acid groups to various shapes of polyethylene, polypropylene and polytetrafluoroethylene by radiation-induced graft polymerization. Reactive & Functional Polymers, 1993, 21, 187-191.	0.8	35
191	Ion exchange of lysozyme during permeation across a microporous sulfopropyl-group-containing hollow fiber. Biotechnology Progress, 1993, 9, 193-198.	1.3	61
192	Simple Introduction of Sulfonic Acid Group onto Polyethylene by Radiation-Induced Cografting of Sodium Styrenesulfonate with Hydrophilic Monomers. Industrial & Engineering Chemistry Research, 1993, 32, 1464-1470.	1.8	26
193	Evaluation of Performance of Pulp-Ball-Based Deodorants Journal of Environmental Conservation Engineering, 1993, 22, 272-275.	0.0	1
194	Simple Introduction of Ion-Exchange Group onto Various Shapes of Polymers. Journal of Ion Exchange, 1993, 4, 154-162.	0.1	1
195	Sorption kinetics of cobalt in chelating porous membrane. Industrial & Engineering Chemistry Research, 1992, 31, 2722-2727.	1.8	52
196	Radicals contributing to preirradiation graft polymerization onto porous polyethylene. International Journal of Radiation Applications and Instrumentation Nuclear Tracks and Radiation Measurements, 1992, 40, 31-36.	0.0	4
197	Water/acetone permeability of porous hollow-fiber membrane containing diethylamino groups on the grafted polymer branches Journal of Membrane Science, 1992, 71, 1-12.	4.1	58
198	Metal collection using chelating hollow fiber membrane. Journal of Membrane Science, 1991, 58, 221-234.	4.1	77

#	Article	IF	CITATIONS
199	Water flux and protein adsorption of a hollow fiber modified with hydroxyl groups. Journal of Membrane Science, 1991, 56, 289-302.	4.1	75
200	Adsorption and elution in hollow-fiber-packed bed for recovery of uranium from seawater. Industrial & Engineering Chemistry Research, 1991, 30, 185-190.	1.8	56
201	Introduction of a high-density chelating group into a porous membrane without lowering the flux. Industrial & Engineering Chemistry Research, 1991, 30, 2234-2237.	1.8	89
202	Comparison of simultaneous and preirradiation grafting of methyl methacrylate onto a porous membrane. Chemistry of Materials, 1991, 3, 987-989.	3.2	6
203	Protein adsorption capacity of a porous phenylalanine-containing membrane based on a polyethylene matrix. Journal of Chromatography A, 1991, 586, 27-33.	1.8	99
204	Adsorption and elution of bovine γ-globulin using an affinity membrane containing hydrophobic amino acids as ligands. Journal of Chromatography A, 1991, 585, 45-51.	1.8	111
205	Adsorption characteristics of an immobilized metal affinity membrane. Biotechnology Progress, 1991, 7, 412-418.	1.3	145
206	Synthesis of new polymers containing tannin. Journal of Applied Polymer Science, 1990, 39, 855-863.	1.3	8
207	Optimum preparation conditions of amidoxime hollow fiber synthesized by radiation-induced grafting. Journal of Applied Polymer Science, 1990, 39, 2153-2163.	1.3	40
208	Permeability of methyl methacrylate grafted cellulose triacetate membrane. Chemistry of Materials, 1990, 2, 705-708.	3.2	15
209	Phosphorylated hollow fibers synthesized by radiation grafting and cross-linking. Journal of Membrane Science, 1989, 43, 131-141.	4.1	59
210	Novel hollow fiber membrane for the removal of metal ion during permeation: preparation by radiation-induced cografting of a crosslinking agent with reactive monomer. Industrial & Engineering Chemistry Research, 1989, 28, 1808-1812.	1.8	48
211	Recovery of uranium from seawater using amidoxime hollow fibers. AICHE Journal, 1988, 34, 411-416.	1.8	88
212	Effect of vapor- and liquid-phase radiation grafting on water permeability of porous hollow-fiber membrane Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1988, 1988, 212-216.	0.1	9
213	Adsorption equilibrium of uranium from seawater on chelating resin containing amide oxime group Kagaku Kogaku Ronbunshu, 1987, 13, 795-800.	0.1	9
214	Characteristics of uranium adsorption by amidoxime membrane synthesized by radiation-induced graft polymerization. Journal of Membrane Science, 1987, 34, 307-315.	4.1	11
215	Porous amidoxime-group-containing membrane for the recovery of uranium from seawater. Industrial & amp; Engineering Chemistry Research, 1987, 26, 1977-1981.	1.8	61
216	Characteristics of uranium adsorption by amidoxime membrane synthesized by radiationinduced graft polymerization. Journal of Membrane Science, 1987, 34, 307-315.	4.1	27

#	Article	IF	CITATIONS
217	Synthesis of a hollow fiber type porous chelating resin containing the amide oxime group by radiation induced graft polymerization for the uranium recovery Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1986, 1986, 1792-1798.	0.1	10
218	Adsorptive Characteristics of Fibrous Adsorbent for Uranium. Journal of Nuclear Science and Technology, 1983, 20, 352-354.	0.7	3
219	Adsorptive characteristics of fibrous adsorbent for uranium Journal of Nuclear Science and Technology, 1983, 20, 352-354.	0.7	1
220	A method for determination of integral interdiffusion coefficient in a cation exchange membrane Journal of Chemical Engineering of Japan, 1982, 15, 487-489.	0.3	2
221	Chemical Forms of Uranium in Artificial Seawater. Journal of Nuclear Science and Technology, 1982, 19, 145-150.	0.7	48
222	A fundamental study on recovery of copper with a cation exchange membrane: Part 2 — Transfer rate of copper and hydrogen ion through a cation exchange membrane. Canadian Journal of Chemical Engineering, 1982, 60, 650-658.	0.9	27
223	Chemical forms of uranium in artificial seawater Journal of Nuclear Science and Technology, 1982, 19, 145-150.	0.7	11
224	Diffusivities of Uranium in Artificial Seawater. Kagaku Kogaku Ronbunshu, 1981, 7, 545-548.	0.1	25